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Abstract

This thesis presents de Haas–van Alphen (dHvA) measurements on high quality samples

of BaFe2P2. Energy dispersions from density functional theory (DFT) calculations were

tweaked to match the measured Fermi surface orbits by rigidly shifting both the inner and

outer electron energy bands and the inner hole band by 50 mRy, 43 mRy and -83 mRy

respectively. The hourglass shaped outer hole band energy required no shift at the wide

part and a shift of -38 mRy at the narrow part which was found to be nested with the inner

electron band. To achieve a smooth transition between the two energy shift regimes, the

dispersion was tweaked proportionally to the dz2 band character and a complete Fermi

surface was determined. The shifts were attributed to nesting conditions which were

supported from calculation of the bare Lindhard susceptibility. Therefore nesting is not a

sufficient condition for superconductivity.

The thermal effective masses were determined on the electron and, for the first time,

hole orbits and the spin effective masses on the electron orbits. The masses showed a

moderate renormalisation (between 0.88mb and 3.04mb) on both hole and electron bands

in line with previous literature.

In addition, Hall measurements taken in high field from 1.4 K to 300 K on good quality

samples of Bi2+z−yPbySr2−x−zLaxCuO6+δ (BSCO2201) were presented. A sharp change

in RH(0 K)/RH(300 K) was observed at p = 0.19 well inside the superconducting dome

which coincides with various phenomena related to the pseudogap and so hints at the fact

that the pseudogap may persist inside the superconducting dome.

A simple model based on the Ong construction was fitted to the Hall data and relative

magnitudes of the scattering terms, Γ = Γ0 + Γ1 cos2(2φ)T + Γ2T
2 were compared with

terms obtained from fits to resistivity curves. The T -linear terms were found to agree

within a factor of around 0.6 to 1.5 although the residual resistivity terms only agreed

within an order of magnitude likely due to a lack of a vF term in the scattering rate and the

relative proximity to the van-Hove singularity. Nonetheless an increase in scaling of the

T -linear term with Tc similar to that found by Abdel-Jawed et al. These results provide a

good starting point for further refinement and possible full agreement between temperature

dependent Hall and resistivity data in the cuprates without resorting to complicated Fermi

surface reconstruction scenarios.

Finally a novel doping determination technique based on a method of matching high

temperature Hall coefficient of BSCO2201 to that of Tl2Ba2CuO6+δ (Tl2201) as a reference

material. The resulting dopings are greater than those from the ‘universal’ Presland/Tallon

relation and less than those assigned to similar samples measured with angle resolved

photoemission spectroscopy (ARPES). The overall spread in dopings for these samples

from this new method was determined to be between p = 0.12 and p = 0.36.
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Chapter 1

Introduction

This first part of this chapter starts with a brief general overview of the pnictides with

particular focus on the Fermiology of the ‘122’ family and the BaFe2(As1−xPx)2 series.

This includes previous work by the Bristol group and how this relates to spin fluctuation

mediated pairing.

The second part of this chapter describes the cuprate phase diagram. In particular it

outlines some more contentious regions of the diagram such as the pseudogap and stripe

order and how high field transport studies on BSCO2201 can elucidate their nature. It also

details previous work performed by the Bristol group on LSCO and how performing high

field measurements on BSCO2201 can provide further understanding of the mechanisms

at work in the phase diagram.

1.1 The iron-pnictides

One of the most important recent breakthroughs in the field of high-Tc superconductivity

has been the discovery of the iron-pnictide superconductors in 2006 [1, 2] which sparked an

enormous amount of interest when it was discovered that they could be tuned to transition

temperatures above the historic limit in Nb3Ge of 23 K [3].

Since their initial discovery, many different superconductors have been discovered

which all feature similar tetrahedrally bonded transition metal-pnictide or transition metal-

chalcogenide∗ layers which are grouped by structure into families as shown in figure 1.1.1.

The families are labelled according to the ratios of the constituent elements, so for example

the ‘1111’ family features four element types in equal proportion, the ‘122’ family features

three element types with one of the elements being half as abundant as the other two.

In the case of a doped or substituted material, this labelling refers to the stoichiometric

parent compound.

With the exception of the 11 family, the ‘iron-pnictide’ layers are separated by the so

called ‘charge reservoir’ layers, which are comprised of a single element type in the case

of the ‘122’ and the ‘111’ families and two element types in the ‘1111’ family as shown in

figure 1.1.1.

∗For convenience, when referring to iron-pnictides in this thesis, unless otherwise stated, it should be
taken to also include the various transition metal-pnictide/chalcogenide combinations that feature this
tetrahedral structure.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1.1: From left to right: 1111 unit cell, 122 unit cell, 111 unit cell, 11 unit cell. Adapted
from ref. [4].

Although the highest Tc values have been attained with compounds in the ‘1111’

family (SmFeAsO1−xFx has a Tc of 55 K [5], Gd0.8Th0.2FeAsO has a Tc of 56 K [6] and

Sr1−xSmxFFeAs has a Tc of 56 K [7]), it is comparatively difficult to grow large single

crystals of the 1111 family causing the emphasis to be shifted to the 11 and the 122

families, especially for neutron scattering studies [4].

The most studied materials with these transition metal-pnictide/chalcogenide layers

typically feature As and P in the pnictide case and Se and Te in the chalcogenide case

with the highest Tc values being attained with Fe as the transition metal although super-

conductivity has been achieved with stoichiometric compounds featuring Ru, Rh, Ir and

Ni as the transition metal [4].

1.1.1 Fermiology of the pnictides

The Fermiology — i.e. the nature of the Fermi surface — is key to the formation of the

spin density wave (SDW) state, the onset of which provides the fluctuations necessary

for spin-fluctuation mediated pairing and will be described in more detail in the next

section. The Bristol group has published a series of results on the Fermiology of various

iron-pnictides obtained by de Haas–van Alphen (dHvA) measurements which complement

measurements of the Fermi surface by other groups using angle resolved photoemission

spectroscopy (ARPES). A summary of some of these measurements are detailed below.

LaFePO, a member of the 1111 family, has a relatively low superconducting transition

temperature of ∼6 K, nonetheless it is a good example to demonstrate the quasi-cylindrical

electron and hole Fermi surfaces typical to the iron-pnictides. Figure 1.1.2 shows the

Fermi surface from density functional theory (DFT) calculations using generalised gradient

approximation (GGA) with hole pockets centred around Γ and the electron pockets centred

around M (adapted from ref. [8]).

The momentum separated hole and electron pockets are indicative of a semi-metal,
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which distinguishes the pnictides from the cuprates∗ which are charge insulating antifer-

romagnets in the undoped state.

The top right two panels of figure 1.1.2 shows slices along the 110 plane through the

LaFePO brillouin zone (BZ) which demonstrate how the mean field DFT calculations had

to be adjusted by uniformly shifting the energies in each of the bands to match the dHvA

measurements. This leads to smaller Fermi surface volumes than the unadjusted GGA

calculations.

The LaFePO Fermi surfaces are quasi-2D with only relatively weak energy dispersions

in kz which are more pronounced for the electron pockets. In contrast, the middle portion

of figure 1.1.2 shows the Fermi surface for the non-superconducting 122 family iron-pnictide

CaFe2P2 measured by the Bristol group [9]. This also demonstrates semi-metal charac-

teristics but a much stronger kz dispersion leading to entirely 3D hole surfaces. In this

case the GGA calculations matched the measured dHvA data closely with no energy shifts

required.

Comprehensive determination of the Fermi surface of Sr2P2, another non-superconducting

122 phosphide, also shows 3D hole Fermi surfaces as demonstrated in the bottom row of

figure 1.1.2. In this case it was necessary to shift some of the bands from the GGA cal-

culations to match the dHvA data. Here the outer hole pocket is strongly warped along

kz but does not pinch off as in the CaFe2P2 case, the inner hole pocket after the shift

becomes pinched off and fully 3D.

SrFe2P2, CaFe2P2 as well as BaFe2P2 form the end members of superconducting series

that begin with the arsenide counterparts. The arsenide parent compound change from the

tetragonal structure to an orthorhombic structure below a characteristic temperature, Ts

which occurs close to a transition from a paramagnetic phase to a stripe SDW state below

the Néel temperature, TN . This affects the Fermiology by a doubling of the real-space

unit cell volume and therefore halving of the BZ volume. The halving of the BZ ‘folds’

the larger zone along the dashed lines illustrated in figure 1.1.3 (a) causing the electron

bands in the tetragonal BZ corners to be superimposed on the hole bands around Γ at

the BZ centre. Figure 1.1.3 (c) demonstrates how the overlaying of the hole and electron

bands in momentum space opens a gap around the Fermi energy and the Fermi surface

disappears. In practice, the hole and electron Fermi surfaces are not sufficiently symmetric

to perfectly cancel and so several small residual hole and electron pockets are left over.

LDA+U calculations and dHvA measurements were performed on BaFe2As2 [12] with

the Fermi surface from this publication reproduced in figure 1.1.4. Similar measurements

were also performed on detwinned∗ samples of BaFe2As2 by Terashima et al. [13] which

demonstrated similar small pockets with only small difference in detail.

∗Cuprates are the other major class of high-Tc superconductors, see section 1.3 for an introduction.
∗Similar a and b lattice vectors in orthorhombic crystals can lead to imperfections where one region is

rotated by 90◦ with respect to another region. This is known as twinning and when a material which is
susceptible to twinning has all the a and b axes aligned, the crystal is said to be ‘detwinned’.
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Figure 1.1.2: Fermi surfaces of various iron-pnictides from top to bottom: LaFePO (top) with
110 slices of the BZ showing the DFT calculations both before (unshifted) and after (shifted)
adjustments to match the dHvA data. CaFe2P2 (middle) with a 110 slice across the Fermi surface.
SrFe2P2 (bottom) with 110 slices similar to LaFePO. Adapted from refs. [8–11].
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Figure 1.1.3: (a) Illustrative 2D projection of the Fermi surface of the tetragonal BZ (solid
line) with the reconstructed BZ as a dashed line (b) Schematic semi-metal band structure of the
tetragonal phase showing the hole band at Γ and the electron band at M with the dashed lines
showing how the folding of the BZ aligns the hole bands onto the electron bands (c) The folded
SDW BZ with the resulting gap at the Fermi energy.

Figure 1.1.4: Left: BaFe2As2 Fermi surface from LDA+U calculations adjusted to fit dHvA
measurements. Right: Corresponding band structure showing both with (green) and without
(black) corrections to U .
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1.1.2 The BaFe2(As1−xPx)2 series

The BaFe2(As1−xPx)2 series is one of many that stem from the parent compound BaFe2-

As2, although unlike the electron doped BaCo2xFe2(1−x)As2 and the hole doped BaxK(1−x)-

Fe2As2 series, the BaFe2(As1−xPx)2 progression is entirely isovalent meaning that the

changes affected due to the P substitution are due to structure and chemical pressure

rather than additional charge carriers. Nonetheless, superconductivity occurs with a very

similar phase diagram as with the charge-doped examples in the same 122 family of iron-

pnictide materials.∗.

At x = 0 the BaFe2(As1−xPx)2 series begins at BaFe2As2, a compound which becomes

antiferromagnetic at around 138 K, and moves with increasing x towards BaFe2P2 which

is metallic to low temperatures. Neither end members are superconducting, however

as As is substituted for P, the low temperature antiferromagnetic state decays, giving

way to superconductivity which kicks in at approximately x = 0.18 and increases to the

optimal substitution of x = 0.31. Superconductivity then decreases until it gives way to

a paramagnetic ground state at around x = 0.71. Figure 1.1.5 shows the phase diagram

adapted from ref. [15] as determined by resistivity measurements. Also detailed in the

Hole doping x

T
em

p
er

at
u
re

 (
K

)

TN

TS

Tc

BaFe2P2

Figure 1.1.5: Phase diagram adapted from ref [15] measured by resistivity. Ts, TN and Tc
are the structural transition, the antiferromagnetic transition and the superconducting transition
temperatures respectively.

phase diagram is the structural transition which occurs as the tetragonal I4/mmm cell

moves to an orthorhombic cell as it passes below the line marked Ts. This coincides with

the reconstruction of the Fermi surface detailed in the previous section.

The progression along the series is isovalent since P and As are in the same periodic

group – group V . The net effect of the substitution is to apply an increasing chemical

pressure as x moves towards 1. Several reports show that applying high physical pressure

(∼5 GPa) to BaFe2As2 results in a similar phase diagram with an antiferromagnetic phase

∗See for example figure 1 in ref. [14].



1.1. THE IRON-PNICTIDES 7

and superconductivity up to ∼30 K [16–18] with Klintberg et al. [19] presenting a direct

comparison between the two types of pressure. As pressure is applied, the unit cell a

axis shrinks slightly less than the c axis (∼ 3% cf. ∼ 4.5% respectively). Interestingly

the c axis shrinking largely occurs in the Fe-Pnictide plane leading to some theories of

the superconductivity emerging from the tetrahedral bond angle between the Fe and the

pnictogen.

Ba

Ba

Ba
a

b

c
Fe(As,P)

Fe(As,P)

Figure 1.1.6: The tetragonal unit cell of the 122 BaFe2(As1−xPx)2 series clearly showing the
tetragonally bonded Fe(As,P) layers.

The Fermiology of the BaFe2(As1−xPx)2 series from a substitution of x = 0.41–1.0 has

been previously measured by members of the group at Bristol using dHvA oscillations [20].

As suggested in the Shishido reference [20], since dHvA has been observed across such a

large range of substitutions, it implies that the material is not prone to disorder as is the

case in many charge doped series [21] making the series an excellent candidate for dHvA

studies. This could be explained by the fact that the substitution is isovalent and that

there is relatively little contribution at the Fermi surface from the pnictide sites∗ where the

substitution takes place, meaning the Fermi surface should not be strongly disrupted when

traversing the series. The Fermi surfaces from the Shishido paper have been characterised

for x ranging from 0.41 to 1 for electron sheets only but have clearly shown that the

DFT calculations consistently overestimate the size of the surfaces. They also show a

linear progression of the electron orbit sizes which is proportional to x. Moreover, dHvA

measurements on the material with x = 0.63 have been performed where one of the

hole surface extrema was observed [22] however DFT calculations as well as comparisons

with SrFe2P2 [11] give evidence for a second hole Fermi surface for materials towards the

P end of the series, (towards the As end of the series, there appears this second hole

and a third hole surface similar but smaller to the other hole sheets). If the electron

∗See for example, the orbital character for the iron sites from DFT calculations presented in figure 4.3.9
in chapter 4.
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Fermi surfaces are oversized in the DFT calculations, then the hole Fermi surface volumes

should also be oversized in order to remain compensated (electrically neutral). What

is not clear though is whether the shapes of the hole pockets are also altered in the

compounds leading to BaFe2P2. DFT calculations show the larger of the hole pockets in

particular undergoing significant geometric changes, specifically in that it becomes much

more three dimensional as P substitution becomes more complete. The Fermi surface of

the opposite end-member, BaFe2As2, has been fully characterised by previous ARPES

measurements [23] and dHvA [12, 13]. Intermediate unreconstructed superconducting

compounds have been partially characterised by dHvA [22] and ARPES [24]. Coupled

with a full characterisation of the Fermiology of BaFe2P2, this unreconstructed Fermi

surface data can be used to interpolate the Fermiology of the hole pockets across the

portion of the phase diagram outside of the SDW state.

The ARPES measurements of the Fermi surface of BaFe2As2 below the Néel temper-

ature concluded that despite some kz dispersion in the Fermi surfaces, there is adequate

nesting to form the antiferromagnetic state. Ab-initio DFT calculations [20] of the param-

agnetic state have shown the kz dispersion increasing with increasing P, with the outer hole

pockets becoming more three-dimensional through the progression providing the partial

nesting conditions necessary for pair forming SDW fluctuations described in section 1.2∗

1.2 The high-Tc pairing mechanism

The previous section discusses the Fermiology of the iron-pnictides but does not make any

statements as to why this is important to the high-Tc problem. In particular how does

Fermiology relate to the mechanism which causes the Cooper pairs to couple — the so

called ‘pairing glue’.

The charge carrier in a superconducting condensate is a Cooper pair - a quasi-particle

comprising of a bound state of two electrons or two holes with opposite momentum and,

in the singlet case, opposite spin. Evidence for this configuration can be shown from

the Ginzburg-Landau model which, when applied to a superconducting system, gives the

charge of the quasi-particle carriers as 2e, where e is the charge of an electron [25]. Given

that due to their like charges two free electrons repel, it is natural to ask what could

overcome the electromagnetic force to cause these electrons to remain bound in this quasi-

particle state.

Bardeen, Cooper and Schreiffer established much of the theoretical basis — from which

the Ginzburg–Landau model can be derived — in Bardeen-Schreifer-Cooper (BCS) theory

(named after the authors). Within the framework of BCS theory, Bardeen Cooper and

Schreiffer wrote a 1957 paper [26] detailed a pairing mechanism known as the BCS model

∗These calculations do not take into account the reconstruction below Ts however for low x, and instead
assume a hypothetical non-magnetic order.
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which would explain how these electron remained bound together. The model is based

around the concept of phonons scattering off electrons which well suited the supercon-

ducting materials known at the time. Phenomenologically, the mechanism of attraction

is straightforward. Electrons moving through a crystal lattice attract ions on the lattice

sites. These heavy ions respond slowly and are drawn in behind the electron. This has

the effect of both screening the negative electron charge as well as providing an attrac-

tive positive potential for any electron following the original electron. The net effect is

the leading electron draws the following electron in its wake, thus coupling them with

one another. The wavelike distortion of the ions in the lattice can be considered as a

phonon, and the interaction between the electrons and the lattice can be modelled as

electron–phonon–electron scattering.

The BCS model accurately describes what we now know as ‘conventional supercon-

ductivity’, that is pairing which forms a spin-singlet state (S = 0) and which has zero

orbital angular momentum (L = 0). It was not until the discovery of superfluidity∗ in 3He

in 1972 [27] that it became apparent that there may exist forms of pairing that resulted

in spin-triplet pairing state (S = 1) with L > 0. This was later confirmed when super-

conducting analogues were found in the form of heavy Fermion materials. What really

spurred the explosion in interest though was the 1986 discovery by Bednorz and Müller [28]

of high transition temperature (Tc) superconductivity in the cuprates and, more recently,

the ‘pnictides’ by Kamihara et al. [2]. The cuprate class of materials that Bednorz and

Müller found to be superconducting have transition temperatures far in excess of any pre-

viously known superconducting materials and although the BCS model phonon pairing

may play a part, the predominant pairing mechanism in the high-Tc materials is likely to

be something else entirely.

1.2.1 The case against conventional superconductivity in high-Tc mate-

rials

There is a great deal of evidence in the literature for non-BCS model pairing in the high-

Tc and heavy Fermion materials. Although the pairing wavefunction cannot be measured

directly with current techniques, experiments indirectly infer ‘unconventional’ i.e. non

s-wave, BCS-model, characteristics. For example, analysis on penetration depth measure-

ments of YBa2Cu3Oy (YBCO123) show power law behaviour [29], indicating that there

exists states within the momentum averaged gap. SQUID measurements and Josephson

tunnelling experiments on the same material have confirmed alternating phase of the con-

densate wavefunction which points strongly to dx2−y2–wave symmetry [30] (see also refs.

therein). As for other cuprate materials, specific heat measurements on BSCO2201 [31],

∗Superfluidity and superconductivity share much of the same physics although the superfluid 4He
molecules are already bosons and so pairing is not required. Parallels between the two are discussed in
ref. [25].
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as well as penetration depth measurements on LSCO [32] have also proved consistent with

d-wave pairing.

More evidence against conventional superconductivity include the unusual normal state

(i.e. non-superconducting) state properties of the cuprates and heavy Fermion materials.

The BCS model is grounded in Landau Fermi liquid theory which models interacting

itinerant electrons with quasiparticles of heavier effective mass than ordinary electrons

and holes. A hallmark of Fermi liquid behaviour is a T 2 dependence of the resistance,

however experiments on the cuprate La2−xSrxCuO4 (LSCO) [33] and a heavy Fermion

material [34] have demonstrated fractional power law behaviour, T γ where 1 < γ < 2, at

temperatures above the superconducting transition. Given that the Fermi liquid model

breaks down in these examples, it follows that the BCS-model also is likely on shaky

ground for these materials.

There are several arguments against phonons as the sole pairing mechanism in the

pnictide case, Boeri et al. [35] and Mazin et al. [36] present calculations showing that the

magnitude of the electron-phonon coupling is not adequate for the high Tc values attained

in LaFeAsOF, Haule et al. [37] note in the same material that the gradient of the density

of states (DOS) at the Fermi level is such that you would expect an increase in DOS and

hence Tc with hole doping if the BCS model held, however the reverse is true. Non Fermi-

liquid behaviour was demonstrated in the BaFe2(As1−xPx)2 series [38, 39] and although

many superconducting pnictides are believed to have a nodeless superconducting gap [40–

43] there are many [40, 44–47] including the BaFe2(As1−xPx)2 series [48–50] which are

thought to have nodes.

It is interesting to note that unlike the cuprates which universally show a dx2−y2 gap

symmetry, the pnictide materials are note all alike, even pnictides along the same series

such as the LiFeAs and LiFeP show a change in gap structure. Consequently, it may

prove that the nature of the superconductivity may not be universal amongst the pnictide

materials. Irrespective of this, the BCS model pairing alone has been shown to be too

weak to explain high-Tc superconductivity.

1.2.2 Spin-fluctuations

One possible alternate pairing mechanism arises from scattering due to spin fluctuations.

A common feature of phase diagrams for all of the pnictides and the cuprate materials

is close proximity of an antiferromagnetic state to the superconducting state as shown

in figure 1.2.1. The SDW state, described in more detail in section 2.4, is a general

form of magnetic order that describes a periodic modulation of the spins of a system and

encompasses antiferromagnetism and arguably ferromagnetism. In a system close to a

SDW state, short range, damped, antiferromagnetic fluctuations occur and it is these that

are thought to provide the pairing interaction for the Cooper pair states.

Spin fluctuations were originally investigated as a mechanism which suppressed con-
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Figure 1.2.1: Phase diagrams for various high-Tc materials adapted from ref. [51] showing the
proximity of the superconducting phase (SC) to the spin density wave state (SDW) in all cases.

ventional, i.e. s-wave, superconductivity [52] from ferromagnetic fluctuations and were

used to explain why nearly ferromagnetic metals such as Pd has lower than expected Tc.

Later however it was found that in certain regions in real space, for example that sat-

isfy d-wave symmetry, that antiferromagnetic spin fluctuations could possibly provide an

interaction which is attractive and could overcome the Coulomb repulsion [53].

As we will see in section 2.4, a free electron gas is unstable to the ferromagnetic state,

however with favourable band structure conditions, in particular where there is a ‘nesting’

condition, an antiferromagnetic SDW may occur. Nesting is where a Fermi surface in

one region of the BZ maps through reciprocal space onto another similarly sized and

shaped Fermi surface in another region of the BZ via a particular vector q known as the

nesting vector. Since strong nesting leads to a stable SDW state, we are looking for only

partial nesting in the Fermi surface of superconducting materials so that we get enough

spin fluctuations to cause pairing but not too many to cause a full SDW state. A fuller

discussion of the mechanism of pairing due to spin density wave fluctuations is detailed in

section 2.4.

As an aside, nesting is not the only cause of spin fluctuations. For example, frustrated

spin systems such as the Kagome triangular lattice can also be a cause of spin fluctuations,

however this is thought to occur only in very specific 1D and 2D materials.

1.2.3 Pairing in the pnictides

Soon after the discovery of the pnictide materials, a possible pairing mechanism was

proposed based on on the above described spin density wave fluctuations. The original

paper suggested a s± gap symmetry [36] which features a multi band model based on

LaFeAsO1−xFx which matches the semi-metal bandstructure discussed earlier. The spin

fluctuation couples over the BZ diagonal two separate, approximately cylindrical, Fermi

surfaces of opposite phase.

This is an extended s-wave model which satisfies the requirement for opposite phase by

having two separate Fermi surfaces of opposite phase which are partially nested. However
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as already stated, more recent measurements have discovered nodes in the gap structure

in many pnictide materials. While no nodes featured in the original Mazin model, the

s-wave symmetry allows nodes. However the d-wave state requires nodes and given that,

as already stated, some pnictides are nodeless, the d-wave symmetry cannot be the correct

pairing symmetry across all the pnictide materials [54].

1.2.4 Motivation for dHvA measurements on BaFe2P2

In order to explore the role of nesting in the high-Tc superconductors, an investigation at

Bristol was undertaken on the Fermiology of the BaFe2(As1−xPx)2 series by studying angle

resolved dHvA oscillations. This thesis details results in particular on the end-member,

BaFe2P2. The results elucidate the nature of the hole pockets which according to the

DFT calculations change topologically much more than the electron pockets throughout

the series. This will also provide an interesting comparison to recent measurements on the

structurally similar compound SrFe2P2 and CaFe2P2.

We seek to examine if partial nesting is found between the outer hole surface and

the inner electron surface with q = (π, π, π/2) meaning the nesting phenomenon persists

through to the end member of the series despite the fact that superconductivity is not

observed beyond a phosphor content of around x = 0.71. We also seek to measure the

effective masses of the hole pocket in particular to see if they greater than the relatively

weak mass enhancements from the electron pockets thereby indicating stronger electron

correlations on the hole sheets. These investigations are undertaken in chapter 4.

The investigations described here are undertaken in chapter 4. The samples were grown

by our collaborator T. Shibauchi in Kyoto university. Prof. A. Carrington performed the

x-ray characterisation with Dr. I. Guillamon and Dr. M. Haddow. Prof. A. Carrington

also mounted the sample on the cantilever and performed initial DFT calculations which

were repeated by the author. The measurements in the ‘Yellow magnet’ and analysis

were performed by the author with consultation from Prof. A. Carrington and using

MATLAB scripts adapted from code originally written by Dr. E. Yelland. The MATLAB

susceptibility code was written by the author.

1.3 The cuprate phase diagram

The second half of this thesis concerns the nature of the phase diagram of the high-Tc

cuprate materials and understanding the mechanisms at play. As shown in figure 1.2.1 the

phase diagrams for the pnictide materials vary somewhat in their composition but in the

cuprate case, as exemplified by YBCO123 in figure 1.2.1, the hole doped cuprate phase

diagrams are remarkably consistent with the chief differences being quantitative in nature.

However this ‘universality’ amongst the cuprate phase diagrams comes with an abundance
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of features which provide for some complex physical interactions and fragile intermediate

‘crossover’ phases.

The tuning parameter for the cuprate phase diagram is either electron or hole doping

typically performed by elemental substitution at the crystal growth stage or by oxygen

incorporation through annealing. As shown in figure 1.3.1, the two types of doping are

not symmetric with hole doping generally resulting in more robust superconductivity. For

this reason the literature has largely concentrated on the hole doped progression and as

a result it is far better characterised. The doping is usually expressed as a p value which

represents the amount of additional holes (or electrons) per Cu atom.

No Doping Hole dopingElectron doping

Temperature

AFM AFM
Pseudogap

Fermi liquid

SCSC

T*

TN
Tcoh

Tc

OVERDOPEDUNDERDOPED

Figure 1.3.1: A schematic phase diagram showing electron doped to the left and hole doped
to the right. AFM is the antiferromagnetic charge transfer insulator phase, SC is the supercon-
ducting phase. T ∗, TN , Tc and Tcoh are the temperature scales for the pseudogap, AFM state,
superconductivity and coherent Fermi liquid phases respectively. Sketch loosely based on ref. [55].

1.3.1 Charge transfer insulator parent compound

Starting with the undoped state in figure 1.3.1, the parent compound materials at zero

doping are thought to be charge transfer insulators i.e. the top most filled state on each

lattice site contains one electron. In the conventional band picture this should be metallic

since the bands are only partially filled, however when we consider a localised picture of

electrons where electrons are confined to lattice sites, any movement of an electron to the

neighbouring lattice site will cause an energetically costly double occupancy on one site

and zero occupancy on another. This causes the electronic density of states (DOS) to

become gapped around the Fermi surface and hence suppressed conduction leading to a

splitting of the conduction band and an energy gap hence the insulating behaviour.

This is most simply captured in the Hubbard model which encapsulates the charge

hopping concept in a two term Hamiltonian. In the ‘single-band’ case∗ one term represents

the hopping amplitude, t and another representing the cost for double occupancy, U .

∗which actually refers to the fact that each atom has one ‘orbit’ allowing for a maximum occupancy
of two electrons [56].
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At half filling, the conduction band is split by energy U so that half the states are above

the chemical potential and half are below. If the lower of the split conduction band is below

a band of another orbital character, a charge insulator state is realised and any hopping of

electrons is predominantly between bands of a different orbital character within the same

real-space unit cell. Otherwise if the chemical potential lies directly between the split

conduction band, a Mott insulating state is realised and electron hopping predominantly

occurs between unit cells.

The t term is reduced when the ordering of the sites is antiferromagnetic since for any

hopping to occur at all, the spins must be antialigned to avoid double occupancy of like

spins. This region dominates the low doping portion of the phase diagram and remains

antiferromagnetic until either the temperature is high enough to allow transitions from

the Fermi energy to the states at the edge of the gap or the doping has introduced enough

double occupancy holes (or electrons) on lattice sites, which can move without the double

occupancy energy cost, to overcome the insulating behaviour.

1.3.2 Superconducting dome

With increased doping, the antiferromagnetic state gives way to the superconducting dome

at around p = 0.05 which itself gives way to a Fermi liquid metallic state at a doping of

around p = 0.3. The maximum Tc occurs at around p = 0.16. Temperature driven tran-

sitions from both the antiferromagnetic and the superconducting state are clearly second

order thermodynamic phase transitions with jumps in the heat capacity for example, how-

ever there are other regions in the phase diagram which are less well defined such as the

pseudogap and the Fermi liquid crossover whose temperature scale can depend on the

particular probe used and do not have a clear order parameter.

1.3.3 Coherent phase

To the heavily overdoped side of the phase diagram, beyond the superconducting dome

lies the coherent region delimited by Tcoh where the system bears the hallmarks of a ‘con-

ventional’ metal. More specifically this is defined as the region where Σ′′ ∝ ω2 which falls

in line with Landau Fermi liquid theory, the standard theory used to model conventional

metals∗. This is in contrast to the broadly funnel shaped region above and between Tcoh

and T ∗ where Σ′′ ∝ ω and is sometimes known as the ‘strange metal’ region.

The implication is that correlations between electrons are sufficiently weak such that

the mass enhanced quasiparticles of Landau’s Fermi liquid theory are well defined, leading

to conventional metal behaviour. A clear indication of this is a dominant T 2 term in

the resistivity. In the region above Tcoh we observe an anomalous additional T -linear

∗Σ′′ is the imaginary part of the self energy which relates to the quasiparticle lifetime (and scattering
rate) and ω is the excitation energy which is related to T . For more on Landau Fermi liquids see section 2.2.
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contribution high above the Debye temperature typical for cuprates meaning that it is

unlikely to be due to electron-phonon scattering. The confinement of this T -linear region

to above the superconducting dome has been observed in heavy Fermion materials [34]

and is often associated with proximity to a quantum critical point (QCP) [57].

1.3.4 The pseudogap

Above the antiferromagnetic region and the superconducting state is one of the most con-

troversial regions of the phase diagram, the so called pseudogap phase. This is a region

which was first demonstrated in 1989, just a few years after the discovery of the cuprate ma-

terials, by nuclear magnetic resonance (NMR) measurements performed at Bell labs [58].

A noticeable fall in the susceptibility occurs at a temperature significantly above Tc which

led to conclusion of possible spin pairing before the onset of bulk superconductivity†. The

question arose as to what the exact relation of the pseudogap is to the superconducting

state — is it a precursor state, from which superconductivity arises or is it a competing

phase? — and from a materials development point of view, to obtain higher Tc should

we be finding ways to suppress the crossover to the pseudogap state or encourage it? By

T*
T* T*

Tc
Tc Tc

Tcoh
Tcoh

Tcoh

(a.) (b.) (c.)

QCP

Figure 1.3.2: Three scenarios proposed for the T ∗ temperature scale behaviour. (a.) the pseu-
dogap as the ‘precursor’ state, (b.) as the ‘competing’ state, (c.) and the ‘transition’ scenario.

finding where exactly the T ∗ energy scale meets the superconducting dome, strong evi-

dence can be found that supports one or the other scenario. However the problem lies in

the type of probe used. Select spectroscopic measurements including scanning tunneling

microscopy (STM), ARPES and Raman spectroscopy on materials of comparable Tc val-

ues have found that the T ∗ overreaches the superconducting dome entirely [60], meeting

with the overdoped edge at T = 0 K. This supports the precursor state theory illustrated

in figure 1.3.2 (a.) where T ∗ and Tcoh cross to define a region which is below both tem-

perature scales where the carrier are both coherent quasiparticles and paired leading to

the superconducting condensate.

A second scenario is supported by measurements using bulk probes such as heat capac-

ity, magnetic susceptibility and resistivity measurement have shown the T ∗ energy scale

†Cooper paired electrons in the singlet state have zero net spin hence they do not contribute to the
susceptibility, whereas unpaired electrons do. Cooper pairing leads to a reduction in susceptibility, see for
example neutron scattering chapter by S. M. Hayden in ref. [59].
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drops into the top of the superconducting dome [61]. This supports the scenario where

the pseudogap is in competition with superconductivity for states at the Fermi surface.

Once the pseudogap phase is suppressed, scattering from quantum fluctuations at zero

temperature leads to the formation of the superconducting phase at a QCP similar to

that found in heavy fermion materials. This scenario is supported by the observation of

linear scaling of the resistivity with temperature in the region above the superconducting

dome which is a hallmark of proximity of a QCP.

A third scenario is one where the pseudogap simply becomes the superconducting gap

as it meets the top of the superconducting dome. However this scenario leaves hanging

questions as to the roles of the pseudogap, Tcoh and other phenomena in the phase diagram

which would need to be addressed theoretically. Moreover this picture is rendered less

compelling by the observation in LSCO of rapidly increasing, low temperature, normal

state resistivity inside of the underdoped superconducting dome which implies the non-

superconducting energy gap persists into this region.

1.3.5 Stripe order Fermi surface reconstruction

A second contentious region occurs on the underdoped side of the superconducting dome.

Stripe order — i.e. one dimensional charge ordering — has long been known about in

this region in LSCO [62], however LeBoeuf et al. in a recent paper [63] discusses how

low temperature Hall data in YBCO123 can be interpreted in terms of a Fermi surface

reconstruction at p = 0.08 between two different Fermi surface topologies — both of

which feature stripe order and how stripe order may be more general to the cuprates∗.

Figure 1.3.3 illustrates the proposed reconstruction where the mobile electron pockets at

p < 0.08 p > 0.08 Overdoped

kx kxkx

ky

Figure 1.3.3: Schematic representation of the reconstruction thought to occur at p = 0.08.
Shaded region are occupied. Adapted from ref. [64]

the top and bottom of the plot at p > 0.08 undergo a so called Lifshitz transition and merge

into 1D stripes at p < 0.08. Evidence for this is provided in the form of low temperature

∗This proposed reconstruction is separate to the more dramatic Fermi surface reconstruction which is
thought to occur between the large hole-like Fermi surface on the overdoped side (right panel fig. 1.3.3)
and the stripe order phase on the underdoped side (left and centre panel, fig. 1.3.3).
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Hall data where, for p > 0.08, RH is found to drop from positive at high temperatures to

negative at low temperatures which is attributed to the formation of the stripe phase with

highly mobile electron pockets (hence the negative RH at low T ). For p < 0.08, RH still

drops but remains positive for all temperatures which the author attributes to a different

Fermi surface topology which no longer features the small highly mobile electron pockets.

However, as we shall see in the next section, an alternative explanation for the low

temperature Hall behaviour is suggested based on the anisotropic scattering rate observed

in Sr doped La2−xSrxCuO4 (LSCO).

1.3.6 Previous work by the Bristol group

Clearly lots of interesting physics is occurring in and around the superconducting dome

and a solid understanding of this region is key to understanding the problem of high-Tc.

Prof. N. Hussey has been involved in many efforts to shed light on the situation and has

described how an usual anisotropic scattering term in the resistivity can be explain much

of the unusual behaviour in the cuprates [57, 65, 66]. A summary of the work relevant to

this thesis is presented below.

Links between anisotropic scattering and Tc

Simply measuring resistance along different axes gives an averaged scattering rate through

all conduction paths and so to build a map of the angle dependent scattering rates, a

different technique must be used. In angle dependent magnetoresistance (ADMR)∗ a

strong persistent magnetic field is applied before resistance measurements are taken. The

field serves two purposes; firstly, to suppress superconductivity so the normal state can be

probed, secondly to confine the electrons to orbits perpendicular to the field. By detailed

analysis of the change in resistance as the field is applied at various angles, a picture of

the angle dependent scattering rate can be determined.

After performing measurements on samples of Tl2201 with dopings ranging from

strongly overdoped to slightly underdoped [67], a trend emerged which is illustrated in

figure 1.3.4. Here the scattering rate within the ab-plane, Γ, was found to be composed

of two terms; an isotropic term which remained constant with doping (dotted circle) and

an anisotropic component which scaled with the superconducting gap, ∆g (solid line).

Moreover it was found that the superconducting gap and the anisotropic scattering rate

both shared the same shape, (‘d-wave’), and orientation (aligned with the CuO bonds)

which suggests that the anisotropic term may be linked with the exotic superconductivity.

Evidence for the anisotropic scattering term has also been found in ARPES measure-

ments. In underdoped samples, Fermi surface spectral weight that coincides with the

∗Some older literature labels the technique as a measurement of angle-dependent magnetoresistance
oscillations (AMRO), however ADMR is the current preferred term now.
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Increased doping

SUPERCONDUCTOR METALINSULATOR

Δg

FS

Γ

Figure 1.3.4: Schematic of how the scattering rate, Γ, the Fermi surface, FS, and the super-
conducting gap, ∆g evolve with doping across the superconducting dome. Based on figure 1 in
ref. [68]. The dotted line in the scattering is the isotropic part.

antinodal points of Γ (and ∆G) disappears [69] i.e. coherent particles are lost in the

regions of strong scattering.

Further transport measurements which used high magnetic fields to suppress supercon-

ductivity and measure resistivity inside the superconductivity dome have also uncovered

an unusual T -linear term. The measurements showed that the T-linear term did not funnel

down to a point (figure 1.3.5) as is typical of QCP behaviour in, for example, the heavy

Fermion materials [34] but instead spread out into the superconducting region in a ‘foot’

shape [33]. This behaviour is highly remarkable since it does not follow either of the usual

Figure 1.3.5: Plot of the Tn term in the fitted field suppressed normal state of Sr doped LSCO
showing the T -linear term extending throughout the superconducting dome and not to a single
QCP. Taken from Cooper et al. [33]

expected BCS behaviour (given the ‘strange metal’ scattering dependence) or the expected

QCP behaviour (since it does not funnel down to a single QCP at T = 0 K). As of yet,
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this highly unusual behaviour is still not fully explained and has so far this has only been

observed in LSCO. LSCO is known to be in close proximity to a van-Hove singularity∗ in

this region at p ≈ 0.18 [70] and so it begs the question as to whether this is an effect due

to the proximity of the singularity or something more general to the cuprates.

Links between anisotropic scattering and low temperature Hall behaviour

Narduzzo et al. [71] used the anisotropic scattering rate to successfully explain the tem-

perature dependence of the Hall behaviour in Sr doped LSCO which did not require the

invocation of any Fermi surface reconstruction scenarios as described in section 1.3.5.

Through appropriately curved Fermi surfaces — described in more detail in section 2.6.1

— the anisotropic scattering can cause RH to become negative at low T even with an

ostensibly large, hole-like Fermi surface similar to that observed in the overdoped regime.

So far, this has only been demonstrated in LSCO [71] and in order for it to be a viable

explanation for the low temperature Hall behaviour in the cuprates, it will need to be

demonstrated in other cuprate materials.

1.4 Properties of BSCO2201

The unit cell of the high–Tc, doped cuprate Bi2+z−yPbySr2−x−zLaxCuO6+δ (BSCO2201) is

illustrated in figure 1.4.1. It is made up of layers as follows from the top; a BiO layer, then

a SrO layer, then a CuO layer common to all cuprates, then two BiO layers, a SrO layer, a

CuO, SrO and a BiO layer. Variants of BSCO2201 include Bi2Sr2Ca1Cu2O (BSCO2212)

and Bi2Sr2Ca1Cu3O (BSCO2213) which feature one and two extra CuO layers respectively.

Most closely related in terms of structure is Tl2201 which features Tl and Ba in place of

Bi and Sr respectively. BSCO2201 is orthorhombic with a = 5.362(3) Å, b = 5.374(1) Å

and c = 24.622(6) Å [72], Tl2201 on the other hand has a = 5.4580(3) Å, b = 5.4848(5) Å

and c = 23.2014(5) Å [73]. Undoped BSCO2201 has an excess of holes and lies slightly to

the underdoped side of the phase diagram. By substituting in La for Sr, the amount of

holes is reduced allowing access to a range of slightly overdoped to underdoped. However,

since the substitution takes place adjacent to the CuO planes where all the interesting

electronic behaviour happens, La doping introduces a lot of disorder into the system. Pb

is also substituted for Bi which increases the number of holes allowing the more overdoped

region to be accessed. Since Pb substitutes into the BiO layer which is far from the CuO

plane, less disorder is introduced. Sometimes Pb is introduced alongside La even when

a more underdoped state is desired to avoid forming structures in the BiO planes which

affect ARPES measurements [74]. Furthermore, annealing in oxygen decreases the number

of carriers depending on how much additional oxygen is absorbed allowing for even more

∗A spike in the DOS brought about by a flat region of the bandstructure at the Fermi level.
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Figure 1.4.1: Unit cell of BSCO2201 demonstrating the layers. Tl2201 is similar but with La for
Bi and Ba for Sr. Note that Pb doping occurs away from the CuO planes.

fine grained tuning of the doping. By adjusting these parameters a very wide range of

doping values can be accessed in BSCO2201 which makes it appealing for study.

Figure 1.4.2: Band dispersions at the Fermi energy for various dopings. Left panel shows
BSCO2201, right panel shows LSCO. Note the saddle points at (π, 0) which cause the van-Hove
singularity at p ≈ 0.18 for LSCO and at p ≥ 0.2 for BSCO2201. Adapted from ref. [70].

1.4.1 Fermiology of BSCO2201

There is a crossover in overdoped cuprates between a large hole-like Fermi surface to an

electron-like Fermi surface that leads to a saddle point in the DOS and consequently a

van Hove singularity as shown in figure 1.4.2, which is adapted from ARPES results from

ref. [70]. This occurs in LSCO at around p ≈ 0.18 which is approximately critical doping

and may lead one to believe that the critical behaviour is related to the proximity of the

van Hove singularity. However the same crossover does not happen at the same doping in

BSCO2201, rather it appear to occur at p ≥ 0.2, relatively far from the critical value of

p ≈ 0.16. For this reason BSCO2201 is an attractive material to study to determine more
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about the relationship (or lack thereof) between the critical behaviour and the van Hove

singularity.

1.4.2 Determining the doping

The precise determination of doping from a chemical standpoint is tricky. For LSCO —

assuming pure ionic donation — substituting more Sr for La simply adds one more hole

per extra Sr atom per unit cell. However for YBCO123 and YBa2Cu4Oy (YBCO124)

for example, there exist CuO chains (oxygen deficient CuO layers) which absorb some of

the doped charge, in other cuprates the heavy metal atom has a mixed valency meaning

that the substitution relation is not so straightforward. Various techniques are employed

to determine the doping level but as a rule some a priori knowledge of composition is

required.

Typically BSCO2201 doping is determined by matching the Tc normalised to the max-

imum Tc to a ‘universal’ parabola determined by Presland et al. [75] or more recently by

comparing Hall data to the well defined doping of LSCO [76]. However there are concerns

as to whether it is appropriate to compare BSCO2201 to LSCO when it comes to the

Hall data in the overdoped side of phase diagram due to the proximity of the van-Hove

singularity.

However, recently the doping of Tl2201 in overdoped samples was well characterised

by dHvA measurements of the Fermi surface [77] which through the Luttinger sum rule,

based on the size of the Fermi surface volume, assigned higher dopings to the Tl2201

samples than samples of LSCO of comparable Tc. Given that structurally, BSCO2201 is

much more similar to Tl2201 than LSCO and Tl2201 is also not in immediate proximity

to the van-Hove singularity, it may be preferable to compare the RH values in BSCO2201

to Tl2201 using a method similar to that used by Ando et al.

1.4.3 Motivation for high-field transport measurements on BSCO2201

Original motivation for the high field transport measurements on BSCO2201 was to recre-

ate the magnetoresistance measurements performed on LSCO on a different material which

is not so close to a van-Hove singularity to elucidate whether the highly unusual ‘foot’

shape for the T -linear region is specific to LSCO or more general to the cuprates. More-

over BSCO2201 allows for wider doping into the underdoped region — resistivity in LSCO

diverges on the underdoped side at low temperatures — and so will allow us to observe

how the progression continues. BSCO2201 also demonstrates transport behaviours which

are consistent with other high-Tc cuprate materials, for example, from resistance measure-

ments it demonstrates a similar maximum in the underdoped dρab/dT curve as underdoped

YBCO [78] and on the overdoped side, BSCO2201 demonstrates a monotonic upward trend

in dρab/dT with increasing temperature similar to what has been observed in Tl2201 and
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LSCO [78].

During the course of the investigations however, it became apparent that even with

field strengths of up to 60 T in pulsed fields, the upper critical field, Hc2 of many of the

samples at key temperatures could not be reached despite their relatively low Tc which

would imply narrower fluctuation regimes. However, field strengths were generally strong

enough to recover B-Linear behaviour in the Hall component.

By examining the temperature dependence of Hall data down to 1.4 K in BSCO2201

we can determine if a model based on the Ong construction and anisotropic scattering can

explain the low temperature Hall behaviour in BSCO2201 similar to what was shown for

LSCO [71]. This will help determine whether the geometric arguments provided by Ong

apply more generally to the cuprates and whether it is therefore necessary to invoke the

complex Fermi surface re-construction scenario described by LeBoeuf et al. to describe

the behaviour of RH in the cuprates.

Previous Hall measurements have been performed on BSCO2201 by Ando et al. [76,

78] which are shown for comparison in the results section [78]. However these results do

not go to low temperatures, being restricted by the onset of superconductivity. Our own

results used high field measurements at LNCMI and HFML to suppress superconductivity

and examine the low temperature regions in detail. Moreover our samples are focused on

the overdoped region which complements the underdoped data set presented in the Ando

and Balkirev papers [79].

Furthermore, we can study the Hall effect to investigate the doping determination

according to Tl2201 described previously. We compare the data with results from ARPES

by our collaborators on the samples from the same batch which determine the doping

directly, rather than inference through comparison to Tl2201, by measuring the size of

the Fermi surface within the BZ [80]. The investigations described in this section are

presented in chapter 5.

The samples were grown by Prof. Takeuchi’s group in Sendai University, Japan in May

2009. The high field data was obtained on three separate occasions. The first LNCMI,

Toulouse results were obtained by the author with the help of Dr. P. Rourke, Dr. B.

Vignolle and Dr. C. Proust. The second set of LNCMI results were obtained by Dr. P.

Rourke, Dr. J-F. Mercure, N. Wakeham, Prof. N. Hussey with the help of Dr. B. Vignolle

and Dr. C. Proust. Finally the data from HFML, Nijmegen was taken by Dr. P. Rourke,

I. Mouzoupoulou, Dr. X. Xu and Dr. A. McCollum. The low field data taken in the ‘Polo

magnet’ at Bristol and all the analysis was performed by the author. The investigations

described in this section are undertaken in chapter 5.



Chapter 2

Theory

This chapter outlines the theoretical basis for both the concepts and measurements relevant

to this thesis. We start with very brief overview of band and Fermi liquid theory, leading

on to the theory behind the dHvA torque technique, then a brief overview of DFT and

magnetotransport.

2.1 Band theory and the Fermi surface

The size and shape of the Fermi surface is key to many electronic phenomena and in

particular plays an important role in the formation of the spin density wave (SDW) insta-

bility explained in section 2.4. The Fermi surface, defined as the volume in k-space which

bounds the occupied electron states at T = 0 K, is spherical in simple free-electron case.

This corresponds with intuition as the electrons tend to the lowest energy states without

double occupancy and in the free-electron case the lowest states correspond to the lowest

magnitude of k. However most Fermi surface topologies are more complicated and may

feature more than one ‘sheet’ or ‘pocket’ which encloses occupied (i.e electron) or unoc-

cupied (i.e. hole) states. BaFe2P2 which is the subject of chapter 4, has a combination of

both hole and electron pockets in separate regions of the BZ.

To examine how hole and electron pockets may arise, we examine how gaps in the

energy dispersion may occur. It can be shown∗ that energy gaps appear in the repeated

free-electron dispersion when subject to a perturbing periodic potential due to Bragg

reflection at the BZ boundaries. This leaves a dispersion which is separated into discrete

layers of energy known as ‘bands’. The dispersion forms an inverse parabola near the

top of a band and so when the electrons are allocated states, the energy of the Fermi

surface states may fall just below the peak of these parabola in which case the k-space

region defined by the unoccupied states at the top of the parabola defines hole pockets of

Fermi surface. If the electrons fill up a band entirely and a small portion of the bottom

of the next band then the enclosed k-space region is full of occupied electron states. A

more complicated periodic potential can result in partially filled hole and electron band

parabolas and hence the semi-metal type Fermi surfaces seen in the pnictides.

∗See for example chapter 9 in ref. [81] and chapter 7 of ref. [82].

23
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2.2 Fermi liquid theory

The nearly-free electron gas model for ordinary metals∗ used as the foundation for the

dHvA theory in the next section is an extremely coarse approximation to the real situation

and yet provides surprisingly good, predictive results in a variety of scenarios even though

the electronic lattice potential is ignored. Fermi liquid theory provides the theoretical basis

which explains why we can use non-interacting particle models with a simple modification

of the masses of the interacting Fermionic particles.

From a mathematical standpoint, Fermi liquid theory considers a gas of non-interacting

particles and gradually ‘switches on’ the interactions. Provided the system transitions

adiabatically† then the ‘particles’ in the resulting system, which is known as a ‘Fermi

liquid’, can be modelled using the same mathematics as the non-interacting system with

an adjusted mass. This adjusted mass is known as the ‘enhanced mass’ and encompasses

the interactions in the system with the magnitude being an indicator of the interaction

strength. The enhanced mass particles are labelled quasiparticles since they no longer

share the same mass as an electron at rest and are, arguably, a product of a mathematical

abstraction.

At the time of writing, Fermi liquid theory describes what would be considered ‘ordi-

nary’ metals with deviations from Fermi liquid theory generally considered of interest in

a number of systems. Moreover the theory behind measurement techniques such as dHvA

— described in the next section — rely on the existence of coherent quasiparticles at the

Fermi surface to be valid. The reconciliation of observed dHvA oscillations in cuprates

with evidence for reduced quasiparticle weight from ARPES data currently provides one

of the interesting challenges of high-Tc research.

2.3 De Haas-van Alphen oscillation

In this section the phenomenon of dHvA oscillations is described. It is not immediately

apparent how a ramping magnetic field could cause oscillations in such a wide range of

parameters but Lifshitz and Kosevich provided an explanation through their eponymous

equation based on a theoretical basis set out by Landau. This was then used to characterise

the Fermi surface of many metals and establish the field of ‘Fermiology’. Strictly, only

the oscillations in magnetisation are dHvA oscillations and those in resistance are called

Shubnikov-de Haas oscillations. Nonetheless they both originate from the same underlying

phenomena of oscillations in the free energy of the system.

∗A model which only considers the kinetic energies of the electrons and Pauli exclusion terms.
†Adiabatic in this context means with no symmetry breaking changes in phase or, in other words,

there is a one-to-one mapping of the particles in the initial non-interacting system to the quasiparticles in
the final interacting system.
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2.3.1 Overview

For metals, the majority of the interesting physics occurs at the Fermi level and, provided

Fermi liquid theory holds true, the electrons at the Fermi level can be modelled to a high

degree of accuracy with the Sommerfeld model — that is a Fermi gas of non-interacting

electrons in an infinite box. When a magnetic field is applied, the electrons have their

usual grid pattern distribution of plane wave k-vectors rearranged such that the electrons

move around orbital and helical paths. These rearranged k-vectors form a set of concentric

tubes, known as Landau tubes, whose cross-sectional area, a, perpendicular to the field is

given by the Onsager relation:∗

ak⊥ = (r + 1/2)
2πeB

~
(2.3.1)

where r is a quantisation number that sets apart each tube. We can see from the rela-

tion that as B increases, so does the cross-sectional area of the tubes. As the magnetic

field is ramped, successive tubes periodically pass the Fermi surface causing a spike in the

DOS at the Fermi level and also oscillations in the energy of the system, E, which, for

geometric reasons explained in the next section, are far stronger at the maximal and min-

imal (extremal) areas of Fermi surface. Thermodynamic quantities such as magnetisation

(M = ∂E/∂B) and heat capacity (CV = ∂E/∂T |V ) or quantities that depend on the DOS

at the Fermi level such as electrical resistance all oscillate as the field is ramped. Oscil-

lations in the susceptibility are known as dHvA oscillations, oscillations in the resistivity

are known as Shubnikov-de Haas oscillations.

We can relate the ‘frequency’ F (measured in tesla∗) that the tubes pass the Fermi

surface to the extremal Fermi surface area using the following application of the Onsager

relation,

ak⊥ =
2πe

~
F (2.3.2)

By varying the direction of the field we can obtain a series of maximal and minimal Fermi

surface areas in a variety of orientations in order to build a profile of the Fermi surface

topology and size. In practice, there are many possible variations that might fit the model

based on areas of cross-sectional slices alone and so typically ab-initio DFT calculations

— described in section 2.5 — are employed to provide a basis which can be tweaked based

on the constraints from the measurements.

A more detailed analysis of this process follows, beginning with an illustrative mathe-

matical treatment for oscillations in the magnetisation.

∗Derivations of the Onsager relation are given in several textbooks including pg. 32 of Shoenberg [83]
and pg. 272 of Ashcroft & Mermin [81].

∗It is tesla and not tesla−1 because, as we shall see later, the oscillations are actually periodic in 1/B
and not B so their frequency counterpart is measured in tesla.
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2.3.2 Exploring the origin of the oscillations

We begin by calculating the degeneracy of the Landau tubes i.e. the number of electron

states per tube. Because the states under a magnetic field are a one-to-one rearrangement

of the states with no field, we can use the Sommerfeld number of states per unit k-space

(V/4π3) to determine the degeneracy. From the Onsager relation (eqn. 2.3.1) we see that

the additional area for successive tubes is ∆ak⊥ = 2πeB/~ which we can convert to a

volume by integrating over k⊥. This gives a degeneracy per tube therefore of,

Dtube = dk⊥

(
2πeB

~

)(
V

4π3

)
=
eBV dk⊥
~2π2

(2.3.3)

We continue by writing an expression for the energy of the system, E by summing

the energies of the states that lie beneath the cross-sectional area defined by the Fermi

surface (ak⊥F ) for a given k⊥. To do this, we use the Onsager equation to determine R⊥

— the number of Landau tubes below the Fermi surface at this cross-sectional slice. We

then multiply this by the degeneracy of the tubes, D and the energy for states on that

particular Landau tube, εr,

E = D

R⊥∑
r

εr =
eBV dk⊥
~2π2

R⊥∑
r

εr (2.3.4)

where,

R⊥ = floor

[
ak⊥F~
2πeB

− 1

2

]
(2.3.5)

where floor(x) is the largest integer which is less than x. To complete the above equation,

we need an expression for the energies of each of the Landau tubes. The procedure for the

free electron case is to insert the canonical momentum (i.e momentum of a free electron

in a magnetic field) into the non-interacting Schrödinger equation and solve to obtain the

following eigenvalues for the energies on the Landau tubes. Full derivations can be found

in several textbooks∗ and so will not be repeated here. Below is the expression for the

energy eigenvalues,

εr = (r + 1/2)~ωc +
~2k2

2m0
where, ωc =

eB

m0
(2.3.6)

and is known as the ‘cyclotron frequency’. The summation term in equation 2.3.4 can now

∗See for examples pg. 32ff. in Shoenberg [83] or pg. 148ff. in Blundell [84].



2.3. DE HAAS-VAN ALPHEN OSCILLATION 27

be written,

R⊥∑
r

εr =

R⊥∑
r

(
(r + 1/2)~ωc +

~2k2

2m0

)

=
~eB
m0

R⊥∑
r

r +
~eB
2m0

R⊥∑
r

1 +
~2k2

2m0

R⊥∑
r

1

=
~eB
2m0

R⊥(R⊥ + 1) +
~eB
2m0

R⊥ +
~2k2

2m0
R⊥

=
~eB
2m0

R2
⊥ +

(
~eB
m0

+
~2k2

2m0

)
R⊥

which can be expanded out and finally substituted back into equation 2.3.4 to finally

obtain,

E =
e2V dk⊥
4π2m0

B2

[
R2
⊥ + 2R⊥ +

~k2

e

1

B
R⊥

]
(2.3.7)

Key to the above relation is that, although R⊥ is inversely proportional to B, it remains

discrete. This gives rise to the saw-tooth like function shown in figure 2.3.1 for some typical

experimental parameters. Also plotted is the function against 1/B where we can clearly

see that the oscillations are periodic in inverse field hence the frequency being measured

in tesla−1.

B (T)

1/B (T-1)

E
 (
a
.u
.)

E
 (
a
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.)

Figure 2.3.1: Theoretical energy oscillations for a Fermi surface orbit which is 5% of a 5 Å cubic
BZ between 1-18 T. Kinetic energy term is taken to be for an electron at a level half the size of
the Fermi surface.

The above is not a rigorous derivation but is nonetheless illustrative of the origin of

the oscillation in the system energy and how any thermodynamic value which depends

on the energy of the system oscillates as a function of field. To continue we need to

include correction factors to the oscillation amplitude due to finite electron scattering

rates (AD), temperature (AT ), Zeeman splitting of spins (As), doping (Adop), mosaicity
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(Amos), warping of the Fermi surface (Awarp), inhomogeneity of the magnetic field (A∆B)

as well as adjustments due to the fact that the parameter measured was torque of the

sample in a field and not the energy or magnetisation directly (AΓ). For this, we turn to

a more solid foundation that was put forward by Lifschitz and Kosevitch.

2.3.3 Lifschitz–Kosevitch equation

The derivation for the full expression for the Landau thermodynamic potential, Ω∗, be-

gins in a similar way to the previous illustrative example but frames the sawtooth-like

function above as a more mathematically manageable Fourier decomposition which also

conveniently makes the technique highly amenable to Fourier analysis. For this reason the

equation below features higher harmonics which are denoted with the identifier p.

Ω =
( e

2π~

) 3
2 e~B

5
2

m0π2

∣∣∣∣∂2aext

∂k2
⊥

∣∣∣∣−
1
2
∞∑
p=1

p−
5
2Atot cos

[
2πp

(
F

B
− γ
)
± π

4

]
(2.3.8)

where,

Atot = ATADAsAΓAmosAdopA∆B (2.3.9)

The above equation and derivatives of it are known as the Lifschitz–Kosevitch (LK) equa-

tion. To obtain the magnetisation the differential with respect to B is taken to get,

M =
( e
~

) 3
2 e~FV B

1
2

m0π
5
2

√
2

∣∣∣∣∂2aext

∂k2
⊥

∣∣∣∣−
1
2
∞∑
p=1

p−
3
2Atot sin

[
2πp

(
F

B
− γ
)
± π

4

]
(2.3.10)

To attain the above equations, it was necessary to perform an integral over k⊥
∗ which

results in a parameter for an extremal Fermi surface orbit area perpendicular to the field

given by aext.

Attenuation for non-extremal orbits

Quantum oscillation measurement is often described as a probe of the extremal (i.e. the

largest and smallest) Fermi surface orbits perpendicular to the magnetic field. However it

is not immediately clear how this comes about, nor how some hypothetical Fermi surfaces,

such as a perfect cone, would appear in quantum oscillation measurements.

Strictly, all cross-sectional orbits along k⊥ contribute to the system energy as deter-

mined in the LK equation and each of these orbits has a particular frequency, F (k⊥),

related to its orbital area by eqn. 2.3.2. Since all these frequencies interfere, the regions of

k⊥ where the frequencies vary the least dominate the contribution to the system energy,

∗Formally defined as the energy in a open system that is in thermal contact with its surroundings.
∗Similar to the integral in the toy equation from the previous section.
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i.e. where dF (k⊥)/dk⊥ is smallest. In other words, regions along k⊥ where there are

stationary points in F (k⊥) contribute the most to the oscillations in the system energy.

This means for a hypothetical conical Fermi surface with sharp edges, for a field along

the cone axis, there would be no stationary points in F (k⊥) and there would be no domi-

nant frequency contributing to the oscillations in the system energy from stationary points.

However it may be possible that a conical Fermi surface can contribute a signal to the

Fermi surface that is comparable to a stationary point if the wide end of the conical Fermi

surface is comparable in size to the momentum spacing of the Landau tubes — the so

called ‘2D limit’. This restricts the field regimes in which extremal oscillations can be

examined in isolation†.

The above is illustrated in figure 2.3.2. The insets shows a cross-sectional slice of the

described hypothetical conical Fermi surface as the dashed lines, and a parabolic Fermi

surface as a solid line. Assuming field is applied along kz, the parabolic Fermi surface

has a stationary point at its midpoint, the conical Fermi surface has no stationary points.

The main panels each show the result of numerically integrating
∫

cos (2πF (k⊥/B)dk⊥

where F (k⊥) is related to the cross-sectional area of Fermi surfaces in inset through equa-

tion 2.3.2. The maximum radii of the hypothetical Fermi surfaces increase in each panel

from kr = 0.0075 Å−1 in the top left panel to kr = 0.05 Å−1 in the bottom right.
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Figure 2.3.2: Inset: hypothetical radially symmetric Fermi surface slices in the [110] plane with
maximum radius kr shown: dashed line is conical, solid line is parabolic. Main panels: Results of∫

cos (2πF (k⊥/B)dk⊥ where F (k⊥) is related to the cross-sectional area of Fermi surfaces in inset
through eqn. 2.3.2, from top left: kr = 0.075, 0.01, 0.025, 0.05 respectively.

†However, beating effects from similarly sized extremal areas can be employed to measure surface
smaller than this limit, see for example [85].



30 CHAPTER 2. THEORY

For the cases where the sides of the conical surface are steep, then the associated

oscillation is weaker than that from the comparable parabolic Fermi surface as is shown in

the bottom two panels of figure 2.3.2. However, for the narrow Fermi surfaces, the top two

panels show how above a particular field, where the spacing between successive Landau

tubes become large in momentum, the signal from the conical and the parabolic surface

become comparable. This makes sense if we consider the Landau tubes as an oscillatory

probe — the resolution is limited by wavelength and in this regime the relatively flat

conical sides cannot be distinguished from a stationary point.

To measure the finer stationary point features on the Fermi surface (i.e. shallow

corrugations or small pockets) attention needs to be paid to the rapidly oscillating low

field region. As can be seen in the top two panels, the parabolic signal is much stronger

than the conical signal here. However this region is often obscured by technical problems

of high frequency Johnson noise, insufficient sample rates and superconductivity.

The data analysis also requires sufficient oscillations for a fast fourier transform (FFT).

The top right panel of figure 2.3.2 shows that in the region of 6 T and above, only half

an oscillation has occurred meaning FFT is unlikely to give a strong signal. Since data in

the dHvA experiment was taken between 6 T and 18 T we should not expect to be able to

resolve pockets of radius less than kr ∼ 0.01 Å−1 without resorting to analysis of beating

effects [85].

The rate of change of the gradient of the energy dispersion along the electron orbit

therefore affects the oscillation amplitude and is accounted for in the second derivative

term in equation 2.3.10. The flatter the dispersion, the larger this term will be. In the

limiting case where the dispersion in k⊥ is effectively flat close to the orbit then we get

the ‘Yamaji condition’ [86], and the oscillations are greatly enhanced.

We move now to the other attenuating factors listed towards the end of section 2.3.2.

The above calculation demonstrated how a distribution of frequencies can attenuate an

oscillation. At infinity, interfering oscillations with a distribution of frequencies can be

approximated instead as interfering oscillations with a distribution of phases. Because the

oscillations we are measuring are in inverse field, once they become resolvable due to the

experimental problems of noise, sample rates etc. the infinite oscillation approximation

becomes valid. This means we can model each attenuating factor by convolving an appro-

priate phase distribution function with the cosine oscillatory term. It can be shown∗ that

this convolution results in a relatively simple multiplication factor — hence the various A

factors listed in the LK equation which we expand upon below.

∗See for example, Shoenberg pg 57–59. [83].
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Attenuation due to temperature

To find the appropriate phase distribution function for the temperature dependence we

start with the Fermi distribution,

f(ε) =
1

exp ((ε− µ)/kT ) + 1
(2.3.11)

The differential of this distribution results in the broadening function (which is propor-

tional to the probability that the Fermi energy µ is between ε and ε+ dε),

P (ε < µ < ε+ dε) ∝ dε

2kT (1 + cosh[(ε− µ)/kT ])
(2.3.12)

This is convolved with the energy distribution which smears the Fermi surface. Because

the Fermi surface is smeared, so is the parameter F which spreads the Fourier transform

peak due to the oscillation in the system energy, leading to an attenuation of the Fourier

amplitude. The final attenuation factor due to this smearing is given in Shoenberg pg.

59ff [83] and is reproduced below,

AT =
X

sinh(X)
where, X =

2π2pkTm∗T
e~B

(2.3.13)

The above factor includes m∗T , the ‘thermal effective mass’ as a term in a function

of T . As a consequence, by studying the temperature dependence of the amplitude it is

possible to get a measure of m∗T of the electrons at the extremal orbit. Techniques for

doing this are discussed in section 3.1.4.

The LK equation arises from a semi-classical approach in that it considers a system of

single particle Bloch functions which are manipulated using classical relations. Many-body

effects such as electron-phonon and electron-electron interactions were incorporated later

in the development of quantum oscillation theory and were shown to affect As and AT . In

the above case, AT is modified by both electron-phonon and electron-electron effects which

is manifest through changes to the effective mass term [83]. The effective mass determined

in this way is enhanced subject to the same interactions as in heat capacity experiments

but are probed for a particular Fermi surface orbit, whereas heat capacity is averaged over

the entire Fermi surface. As we will see later the thermal mass enhancement is different to

the mass enhancement from spin measurements. For more one this see Rourke et al. [77],

[83] and references therein.

Attenuation due to finite quasiparticle lifetime

The ‘Dingle factor’, AD, is due to the finite lifetime, τ , of the electron quasiparticles due to

scattering. Because of this time scale, there is a smearing of the electron energy through
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the uncertainty principle with a broadening which is approximately Lorentzian in shape.

If we assume τ does not change with energy∗, then this can be modelled as a smearing of

the Fermi level such that the broadening function is,

P (ε < µ < ε+ dε) ∝ dε

(ε− µ)2 + (~/2τ)2
(2.3.14)

and such that after the routine Fourier transform, the end relation is given by,

AD = e−πpmb/eBτ = e−πp/ωcτ (2.3.15)

The exponent in the above can be thought of as the number of orbits the electron has

completed (i.e. each harmonic p is another successive orbit) divided by the expected

number of orbits it will complete, so evidently we expect to see the higher harmonics

having an exponentially lower amplitude. We also expect the tighter, smaller orbits to

have a stronger amplitude. The term mb refers to the ‘band mass’ which will be discussed

in detail later on. Sometimes when discussing the Dingle term, we refer to the Dingle

factor which is the factor in the exponential defined as α ≡ −πpmb/(eτ).

Attenuation due to spin splitting

Applying a magnetic field causes a Zeeman splitting of energy levels of magnitude,

∆ε =
gµBB

2
(2.3.16)

where µB is the single electron magnetic moment (the Bohr magneton) and g is a factor

that is ≈ 2 for free electrons. Rather than smearing, this can be thought of as two separate

Fermi surfaces with separate Fermi energies. The attenuation is given now as,

As = cos

(
πpgm∗s

2

)
(2.3.17)

where m∗s is the ‘spin effective mass’. This is subject to a different set of many-body

interactions in comparison to the thermal effective mass – notably only electron-electron

correlations and not the electron-phonon interactions. Moreover, whilst the spin effective

mass is affected by the many body effects, so is the Landé g factor and even the shape of the

Fermi surface. The spin mass enhancement is related to the standard Stoner enhancement

factor, S = 1/(1− IN(EF )) by m∗s = (1 + S)mb.

∗This is not the case, but at most only a few Landau levels contribute to a particular oscillation and
if we assume that the energy does not vary too much between subsequent levels then the assumption is a
good one.
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Other attenuating factors

Another attenuating factor is due to slight misalignments in the crystal structure, (Amos).

A misaligned mosaic polycrystalline structure can be modelled with an appropriate broad-

ening function. Shoenberg suggests a Lorentzian broadening function, which leads to an

attentuation term which is similar to 2.3.15, although the actual distribution of misalign-

ments could be any distribution. Given a Lorentzian broadening function, the final form

would look like the following,

Amos = e2πp∆Fmos/B (2.3.18)

where ∆Fmos is a parameter that determines the degree of overall misalignment.

The final attenuating factors mentioned here are A∆B, the damping due to field in-

homogeneity which has an effect depending on the shape of the field and Adop, which is

another Lorentzian-like broadening factor due to the doping inhomogeneity in the sample.

Neither of which will be considered in the thesis — the material studied is undoped, and

the magnet is suitably large as to have an essentially constant field profile — and so will

not be explored further∗

2.3.4 Band mass

So far, three different electron masses have been defined, the thermal effective mass, the

spin effective mass and the free electron mass. We now define the ‘band mass’. This the

effective mass determined from the bandstructure generated by our DFT calculations. It

is calculated as follows,

m∗b =
~

2π

∮
Orbit

dk

vF (k)
=

~2

2π

∂ak⊥
∂ε

(2.3.19)

Mass enhancement comes from any kind of interactions the electron has with its environ-

ment — e.g. external fields, other electrons and nuclei — resulting in the free electron

mass me becoming enhanced (renormalised). The band mass is determined from DFT

calculations and so the resulting enhancement is therefore a product of interactions as

modelled by the mean-field approximations used in the DFT calculation. However, as we

will see in section 2.5, DFT calculations typically do not model correlation effects well or

dynamic interactions at all meaning that the band mass only approximates the effects of

correlations and is only valid for T = 0 K. We know that both the thermal effective mass

and the spin effective mass, determined from measurements, are enhanced according to the

actual band structure plus a unique set of interactions specified previously. Figure 2.3.3

details how each of the quasiparticle masses become more refined starting from the crude

free-electron mass approximation on the left and ending with the actual enhancements

due to particular interactions on the right.

∗If you do want to consider these factors, ref. [77] has a passage on doping homogeneity and pg. 64 of
Shoenberg discusses field inhomogeneity [83].
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m*b

m*
T

m*s
me

(free electron mass) (band mass)

(spin effective mass)

(thermal effective mass)

No interactions DFT Band potential

Electron-phonon interactions
Spin symmetric correlations

Spin symmetric correlations
Spin antisymmetric correlations

Figure 2.3.3: A diagram showing a progression in refinement of the interactions represented in
the enhanced electron masses. Additional interaction effects are listed in italics.

The band mass is is a result of calculation and so is only as good as the DFT band-

structure. However it provides a good baseline from which to compare the thermal and

spin effective masses in order to get a sense of the strength of their respective particular

interactions.

A 2D Approximation

Although none of the attenuating factors above have an explicit angle dependence, they do

vary as a function of angle through the band mass. A common approximation to simulate

the dependency in layered systems is to assume the Fermi surface has a flat dispersion

along the kz direction — i.e. is ‘two dimensional’ — and therefore appears cylindrical in

a three dimensional BZ. The cross sectional area of a cylinder is given by,

a =
a0

cos θ
, (2.3.20)

where θ is the angle from the cylinder axis. Increasing the Fermi energy by ∆ε will cause

the cross section at zero angle to change by amount ∆a0, then the band mass is given by,

m∗b =
~2

2π

∂ak⊥
∂ε

=
~2

2π

∂

∂ε

(
a0 + ∆a0

cos θ
− a0

cos θ

)
=

~2

2π

∂a0

∂ε

1

cos θ
, (2.3.21)

therefore

m∗b =
m∗b0
cos θ

(2.3.22)

This means that under this approximation, any factor that includes the band mass, explic-

itly or implicitly∗ can be resolved using the zero angle band mass with an angle dependence

of 1/ cos θ.

2.3.5 Final theoretical observations

Originally dHvA measurements were performed on elemental metals which, by definition,

have a Fermi surface and aside from the d and f electron metals are well modelled by Fermi

∗Meaning m∗T and m∗S which are both enhancements of the band mass.
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liquid theory. The fact that oscillations have been observed in cuprates and pnictides

which have demonstrated distinctly non-Fermi liquid behaviour is therefore remarkable

and moreover implies the presence of coherent quasi-particles at a Fermi surface, at least

in the presence of a strong magnetic field. States in which these conditions co-incide are

usually referred to as ‘generalised Fermi liquids’ which demonstrates some of the hallmarks

of Fermi liquid such as a Fermi surface but not others such as an energy squared dependence

of the imaginary self energy. For more details see refs. [87] and [88].

2.4 Spin density wave instability

Section 1.2 discussed the possibility of high-Tc pairing being due to fluctuations in close

proximity to a SDW state. Here we briefly describe the SDW state and some of the theory

behind it.

Broadly speaking a SDW is a magnetic state just as ferromagnetism and antiferromag-

netism are magnetic states. In its most general sense, a SDW is a periodic modulation of

magnetic spins in both space and time hence it being a ‘wave of spin density’. AFM is

actually a special case of a SDW which does not vary in time, i.e. is static, and also varies

spatially with the periodicity being some multiple of the real-space lattice vector, i.e. is

commensurate with the lattice. Ferromagnetism can be thought of as a SDW state with

wavevector q = 0 i.e. it has no periodic variation and so is not really a ‘wave’.

Using the mean field Hartree-Fock approximation (HFA) the following expression gives

the stability condition for the SDW state [89],

2Iχ0(q) > 1, (2.4.1)

where I is the exchange energy between electron bands and χ0 is the Lindhard suscepti-

bility. The greater the Lindhard susceptibility, the more stable the state.

2.4.1 Lindhard susceptibility

The Lindhard susceptibility models the Stoner excitations (i.e. electron-hole scattering)

of a nearly free electron system. To derive the Lindhard susceptibility, we begin with a

Fermi liquid i.e. a Pauli excluded but otherwise non-interacting gas of free electrons. We

calculate∗ the first order perturbative linear response of this gas to a magnetic field given

by B = exp (q.r − iω.t). The resulting equation is often quoted as,

χ0(q, ω) = lim
δ→0

∑
k

∑
l,l′

f(εk+q,l′)− f(εk,l)

εk+q,l′ − εk,l − ~ω − iδ
D (2.4.2)

∗Not presented here but pg 81 ff. of Dressel [90] has a full derivation.
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where,

D = |〈k + q, l′|V |k, l〉|2 (2.4.3)

and is the matrix transition element for the scattering process. The numerator term

contains two Fermi functions — the same as equation 2.3.11 — which ensure that the

susceptibility is finite for states which scatter across the Fermi energy and zero if they

do not - consequently, the Lindhard susceptibility models electron-hole scattering (Stoner

excitations) in particular. The Fermi functions also smear the susceptibility dispersion as a

function of temperature. The third term in the denominator corresponds to the excitation

energy of the perturbing field with ω corresponding to the temporal frequency of the field.

The final term in the denominator is an artefact of the adiabatic approximation used to

calculate the perturbation with the completed approximation taking the limit of δ → 0.

The first sum in the Lindhard function is over all k states in the first BZ, the second sum

combines each energy band. The real and imaginary parts of equation 2.4.2 are,

Re{χ0(q, ω)} = lim
δ→0

∑
k

∑
l,l′

(εk+q,l′ − εk,l − ~ω)(f(εk+q,l′)− f(εk,l))

(εk+q,l′ − εk,l − ~ω)2 + δ2
D (2.4.4)

Im{χ0(q, ω)} = lim
δ→0

∑
k

∑
l,l′

−δ(f(εk+q,l′)− f(εk,l))

(εk+q,l′ − εk,l − ~ω)2 + δ2
D (2.4.5)

(2.4.6)

respectively. The real part is important in the context of instabilities in metals, the

imaginary part gives the resonance modes for bosonic excitations such as e.g. plasmons,

spin density waves, charge density waves, phonons etc. of energy ~ω.

1D

2D

3D

q = 2kF

0
(q

)

Figure 2.4.1: The analytically solved Lindhard susceptibility as a function of q for the one,
two and three dimensional cases for a free electron dispersion. Plotted from formulae derived in
ref. [90].

For the case of a free electron gas subject to a perturbing stationary wave (i.e. ω = 0),

the Lindhard susceptibility can be resolved analytically. Figure 2.4.1 shows the suscepti-
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bility as a function of q for the one, two and three dimensional cases obtained from ref. [90].

We can see that for the one dimensional case that there is a singularity at q = 2kF which,

according to equation 2.4.1, would imply a SDW state at that wavevector. For the three

dimensional case however the susceptibility peaks at q = 0 which implies a ferromagnetic

instability. In the non-free electron case, a SDW state can occur in a three dimensional

material when a particular bandstructure condition known as ‘nesting’ is met.

2.4.2 Band structure nesting

The nesting condition can be expressed in mathematical terms as follows [91],

εk = εk+Q for εk = εF (2.4.7)

where Q is the ‘nesting wavevector’ and is characteristic of the particular nesting condition

and εF is the Fermi energy. In geometric terms this corresponds to a mapping, across Q

in the BZ, of a section of Fermi surface onto another section of similar size and shape.

Majlis explores a hypothetical nesting case with a band dispersion of form εk =

−ε0(cos kxa + cos kya + cos kza) which results in a nesting vector of Q = (πa ,
π
a ,

π
a ) re-

sulting in a ‘perfect’ nesting condition, (see ref. [91] pg. 214). In practice, nesting may

only be partial as perhaps only small regions of the Fermi surface satisfy or come close

to satisfying the above condition, leading to only modest enhancements of the Lindhard

function. It is these regions of nesting however that are of key interest to contemporary

research into high-Tc superconductivity, since it is in these regions we find the antiferro-

magnetic fluctuations that are thought to underlie the pairing mechanism.

2.4.3 Spin density wave fluctuations

The left panel of figure 2.4.2 illustrates the pairing potential, V , due to the retarded

response of the ionic lattice to a passing quasiparticle, e. This mechanism underlies con-

ventional, i.e. BCS model, superconductivity and overcomes the Coulomb repulsion by a

combination of ionic shielding of the quasiparticle charge and crucially a separation of the

bound electrons in time as well as space.

The right panel of figure 2.4.2 shows the pairing potential due to an antiferromagnetic

spin fluctuation — a precursor to the magnetic ordering that is found in the fully formed

SDW state. Here the Coulomb potential is overcome by separating the bound quasiparti-

cles over space by a wavevector Q. The inset to figure 2.4.2 illustrates a 2D representation

of the pairing potential at neighbouring sites and shows how in some regions the pairing

potential is attractive and in some regions the pairing potential is repulsive.

Cox et al. offers an explanation of how the potential due to the spin density fluctuation

can be understood in terms of the nascent SDW order propagating spin alignment in the

background electronic medium [93]. An electron moving through an electronic background
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e
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moving charge

V V

a

b

Figure 2.4.2: Schematic plots of the pairing potential in real-space. Left: the potential due to
a retarded response of the ion lattice to a passing electron as captured in the BCS model. Right:
the potential due to a spin fluctuation. Inset: the real-space locations of the attractive potentials
(filled circles) and repulsive potentials (empty circles). Adapted from ref. [92].

couples via correlation to an electron in the background with wavevector k causing the spin

of the background electron to anti-align. Another electron in the background at wavevector

k + Q also flips due to an antiferromagnetic spin fluctuation∗. Because of the polarised

nature of the background electron at k+Q, correlation makes the conditions favourable to

spins of opposite alignment, hence the attractive potential for the quasiparticle necessary

to create a bound singlet state.

2.4.4 Notes on practical calculation

Taking the limits of δ → 0 of equation 2.4.6 which is effectively an ever narrowing

Lorentzian distribution, results in an expression for the imaginary part of Lindhard sus-

ceptibility, Im(χ0) ∝ δ(εk+q,l′ − εk, l − ~ω) where δ here is the Dirac delta function. In

a calculation on a continuous energy dispersion, this results in resonances at excitations

which match the difference in energies between states. However, in this thesis, the energy

dispersions used to determine nesting conditions are not continuous and instead are based

on discrete energies obtained from DFT calculations. As such δ will have to remain finite

in order to broaden the delta function into a Lorentzian with width comparable to the

energy differences between the discrete points – the net result of this will be loss of some

fine structure.

Secondly, only bands that lie close to the Fermi energy contribute significantly to the

susceptibility. Since the calculations are computationally costly, only bands which are

close (within the adiabatic or temperature broadening) to the Fermi energy are input into

the calculations.

Finally, we make the assumption that the transition matrix elements are unity. This

assumption greatly simplifies the calculations at the cost of some structure and as such

should be borne in mind when that the resulting calculations are somewhat broad and

should only be used to make qualitative statements about the nesting condition.

∗Presumably this is less likely in a fully formed SDW state due to the stiffness of the state and the
energy cost in creating long lived spin excitations.
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2.5 Density functional theory

The interpretation of the dHvA measurements presented later in this thesis rely to some

extent on the ab-initio calculation of the energy bands of BaFe2P2 using the WIEN2k

code [94] — the technique used to find these energy dispersions are based on a DFT

scheme. The following is broad overview of DFT which is drawn from notes from a series

of summer school lectures by M. Lüders [95] and the ‘ABC of DFT’ by K. Burke [96].

Although implementations of DFT rely on various approximations, DFT itself has

been shown to be exact and mathematically rigorous. It comprises of a set of theorems

developed and proven by Hohenberg, Kohn and Levy [97, 98] and a methodology for solving

to obtain the ground state energies developed by Kohn and Sham. The principle theorem

outlined by Hohenberg-Kohn (HK) shows that the ground state external potential, vext(r),

of a system can be determined by the ground state density, n(r), alone and vice-versa. A

second HK theorem outlines a minimisation condition which expresses the ground state

energy as follows,
∂F [n]

∂n(r)
+ vext(r) = µ, (2.5.1)

where,

F [n] = T [n] + Vee[n] (2.5.2)

F [n] is the ‘universal’ functional∗ and T [n] and Vee[n] are the kinetic and correlation

functionals respectively. µ is the chemical potential which is introduced as a normalisation

term that ensures that there are an appropriate number of electrons in the charge density.

The universal functional is so called because the system is completely defined in the

external potential term alone and so F [n] is common to all systems, nonetheless it still

requires approximation. For this reason as well as the fact that there are no clues from

the HK theorems as to a good starting form for n, still means the problem is intractable.

Kohn-Sham developed a method to find a good starting form for n by showing that

there exists a pseudo-potential, vKS, that satisfies the above equation for a non-interacting

system, i.e. F [n] = T [n], which shares the same n as the original interacting system. This

abstract potential, which takes the place of vext in the above equation, has no strict

physical meaning but it allows us to build a common expression for n in terms of a sum

of single particle wavefunctions. It is given as follows,

vKS = vext(r) +

∫
d3r′

n(r)

|r − r ′|
+

∂Exc

∂n(r)
(2.5.3)

where Exc is the combined particle correlation and exchange energy terms which is ap-

∗A functional maps a function onto a single vector or scalar — typically by integrating over the
function — and is commonly denoted with the function parameter in square brackets. Compare this with
the definition of a function which maps a series of scalars onto a single scalar or vector.
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proximated according to the type of problem to be solved∗. Once an approximate form

for the exchange term has been chosen, the above can be used to find the ground state

energy by running a self consistency cycle that forms the heart of most DFT codes,

1. Guess an initial ni=0

2. Calculate vKS from ni using eqn. 2.5.3

3. Minimise the non-interacting (Kohn-Sham) form of eqn. 2.5.1

4. Calculate the new ni+1

5. Repeat from step 2 with ni being adjusted by ni+1 until ni−ni+1 < some tolerance

Simply replacing ni with ni+1 can cause the calculation to rapidly diverge and so instead

a mixing scheme is used. Typically this incorporates a small fraction of ni+1 with the rest

made up of the old ni. A more complex mixing scheme can be employed to ensure more

rapid convergence, the Broyden mixing scheme for example uses a Newton-Raphson style

root finding mechanism on the Jacobian of the ni − ni+1 [99].

2.5.1 The generalised gradient approximation

The correlation term represents the most significant approximation in the calculation of

DFT. For the DFT presented in this thesis, the GGA was used which is part of the family

of local density approximations (LDAs). The simplest (i.e. lowest order) LDA takes

the effects of the electron-electron correlations at point r to be constant throughout the

system with the magnitude based on the charge density at r. This works particularly well

for free-electron-like systems with lots of itinerant valence electrons since the electrons

are evenly spread throughout — however it does not work so well for highly localised

Hubbard-like systems where there is a high density of electrons at atomic sites, but very

little density just off the sites. A step towards improving this comes by raising the order

of the approximation so that it modifies the constant local density with the rate of change

of the local density as you move off the site (i.e. the local charge density gradient). It

turns out however that incorporating the gradient results in less accuracy than the simple

LDA due to the LDA ‘accidentally’ cancelling a series of so called sum rules. The GGA

builds on the higher order gradient approximation by incorporating the cancelling of the

sum rules to obtain a reasonably accurate approximation to the correlation potential.

The precise way to express the GGA however is still a matter of debate though with

there being multiple implementations [100, 101], each of which may give slightly differ-

ent results∗. Nonetheless GGAs tends to perform better than zeroth order LDA with

inhomogeneous electron densities.

∗Note that in principle, these two terms should be separate but most approximations tend to combine
them into a single term.

∗See for example table 1 in ref. [100]
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2.5.2 Single particle wavefunction bases

Typically, close to the atom, electrons tends to have a radial symmetry whereas itinerant

valence electrons are more planewave-like. Matching each of these to an appropriate single

particle basis set dramatically reduces the amount of calculation time. The augmented

plane wave (APW) method defines a series of ‘muffin-tin spheres’ which are centred on

each of our atoms. Those well inside are described in terms of radial basis orbitals, those

well outside are described in terms of plane waves.

Andersen further simplified the radial basis portion of the APW method by approxi-

mating the wavefunctions by a first order Taylor expansion with respect to energy [102].

The result is known as linearised augmented plane wave (LAPW).

2.5.3 Local orbit wavefunction bases

The standard LAPW method can be made more efficient by up to an order of magnitude

if additional wavefunctions are included with the standard APW wavefunctions which

better describe the states close to the edge of the muffin tin spheres known as the ‘semi-

core states’.

These additional wavefunctions are known as ‘local orbitals’ and allow the calculation

to relax the condition that the standard APW wavefunctions must have a continuous slope

at the muffin tin boundary. The local orbit wavefunctions are used to smooth over the

kinks where the plane wavefunctions and the radial wavefunctions meet. The functions

are radial in nature but are k independent. Including these wavefunctions can result in up

to 50 % fewer wavefunctions required for convergence and significantly shorter calculation

times [103].

2.5.4 Code and execution details

Calculations presented in this thesis were performed using WIEN2k version 07.2 (20th

Feb 2007) [94] using LAPW without the local orbitals. Unless specified, non-spin orbit

calculations are presented although spin-orbit calculations were checked and did not show

significant differences. The GGA according to Perdew-Burke-Ernzerhof [100] was used for

the exchange correlation functional.

Preprocessing of the WIEN2k data into voxel form as well as the theoretical angle plots

were performed using a modified version of MATLAB code written by Dr. E. Yelland.

The basis for the code has been thoroughly field tested within the group over a number

of years.
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2.6 Hall effect

The Hall effect is a consequence of the Lorentz force on a moving charge. To first un-

derstand this we look to the Boltzmann transport equation which allows us to use a

semi-classical approach to incorporate the effects of magnetic field to find expressions for

single electron transport and in particular the conductivity tensor ρ. The Boltzmann

transport equation is expressed as follows,

∂f

∂t
+ v.∇rf + F .∇kf =

df

dt

∣∣∣∣
coll

, (2.6.1)

where f = f(r,k, t) is the occupation distribution for single electrons at position r, in

state k at time t and v is the electron velocity, F is the force on the electron and the

term on the right is the rate of change of the occupation due to collisions. The Boltzmann

transport equation arises from the notion that, classically, the chance of occupation of a

particular state f at t is equivalent to the probability of occupation of a state at f −df/dt
at time t − dt. The fact that the equation employs classical dynamics with quantum

mechanical Bloch waveforms makes this a semi-classical equation.

The collision term on the right is generally complicated and is usually approximated

by the ‘relaxation time approximation’,

df

dt

∣∣∣∣
coll

=
f − f0

τ
, (2.6.2)

where f0 is the equilibrium occupation distribution to which f tends towards exponentially

if the system is perturbed. The rate of the exponential convergence is determined by the

relaxation time, τ , with the decay rate of the discrepancy being proportional to e−t/τ .

As discussed in section 2.3.1, electrons at the Fermi surface subject to a magnetic field

are confined to orbits of a particular area around the Fermi surface due to the Lorentz

force. Dealing solely with the simpler case of closed orbits we make an approximation of a

steady state and uniform distribution so the first two terms of equation 2.6.1 are zero. We

then incorporate the Lorentz force, F = q(E+V ×B), in the third term. Finally through

some manipulations [104] and on assuming that kbT � EF so the Fermi distribution is a

step function, then we can obtain an expression for the conductivity tensor elements, σij ,

as the Shockley-Chambers tube integral form of the Boltzmann equation,

σij =
e2

4π3~2

∫
∂k⊥

∫ 2π

0
∂φ

∫ ∞
0

∂φ′vi(φ)vj(φ− φ′)
m∗

ωc
e−φ

′/(ωcτ) (2.6.3)

where k⊥ and φ are the cylindrical co-ordinates along the field axis and φ′ is an angular

integration variable representing the quasiaprticle path. vi and vj are the Fermi velocities

in the i and j direction respectively. From this integral it is possible to determine the
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conductivity tensor for a variety of Fermi surface geometries, however given the shape

of the BSCO2201 Fermi surface, we are most interested in the cylindrical Fermi surface

which gives the following conductivity tensor, ρ for a magnetic field applied along z,

ρ =

 ρxx ρxy ρxz

ρyx ρyy ρyz

ρzx ρzy ρzz

 =

 1/σ0 ωcτ/σ0 0

ωcτ/σ0 1/σ0 0

0 0 0

 (2.6.4)

where ωc is the cyclotron frequency and σ0 is the Drude conductivity given by,

σ0 =
ne2τ

m∗
(2.6.5)

where n is the carrier density and m∗ is the effective mass. The off-diagonal resistivity

component represents the resistivity perpendicular to the current and in the case of ρxy(=

ρyx) is also perpendicular to the field then this is known as the Hall resistivity,

ρxy =
ωcτ

σ0
=

(
eB

m∗

)
τ
m∗

ne2τ
=
B

ne
(2.6.6)

The Hall resistivity can be understood if we consider an electron (hole) moving along

a rectangular slab subject to a perpendicular magnetic field. The electrons (holes) are

deflected to one side of the slab due to the Lorentz force on the charged particle. Eventually

the charge density on one side becomes high enough that the Coulomb repulsion force of

the density on subsequent charge carriers balances the Lorentz force and an equilibrium

voltage between either side of the slab is reached. This voltage is known as the Hall

voltage, VH and is given by,

VH = −Iρxy
d

= − IB
ned

(2.6.7)

where I and B⊥ are the current and perpendicular magnetic field and n, e and d are

the carrier density, charge and slab thickness respectively. VH is what is measured in

our experiment. This is usually further abstracted to the Hall coefficient, RH , which

encapsulates the carrier density for a metal as follows,

RH =
VHd

IB
=

1

ne
(2.6.8)

Provided the magnetic field is small, meaning ωcτ � 1, then scattering prevents the

formation of Landau tubes described in section 2.3.1. This is known as the low field

limit. The high field limit leads to effects such as the quantum Hall effect and quantum

oscillations.
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2.6.1 Effects of Fermi surface topology

Ostensibly, a hole-like Fermi surface would be expected to demonstrate positive Hall co-

efficient and an electron-like Fermi surface a negative, however it is possible to obtain the

exact opposite due to the curvature of the Fermi surface [71].

For a 2D metal in the weak field semiclassical limit, Ong determined that the transverse

conductivity, σxy from which RH is derived can be obtained by integrating the mean free

path vector, lk = vkτk over the Fermi surface (vk is the Fermi velocity and τk is the

momentum dependent scattering rate). This is illustrated in figure 2.6.1 which integrates

over a Fermi surface with a long mean free path in the (π, π) direction and shows how

the resulting lk traces two loops in opposite directions giving rise to a larger ‘negative’

loop from the negative curvature even though the overall surface has a positive curvature.

Narduzzo et al. argues that this illustrated scenario is close to what we find in LSCO at

l
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A

Figure 2.6.1: Left illustrates a negatively curved Fermi surface with a long mean free path along
the k = (π, π) portion and the integral progressing along the dotted line. Middle shows how
the mean free path vector changes along the integral line tracing two loops of opposite direction.
Adapted from ref. [71]. Right shows the progression of the BSCO2201 Fermi surface about the
van-Hove singularity. Adapted from ref. [80].

high doping [71]. Here the mean free path is affected by the anisotropic scattering rate

detailed in the introduction section and the proximity of the van-Hove singularity leads

to negative curvature in the long flat sides of the Fermi surface as it changes between

hole-like and electron-like, as shown for BSCO2201 in the right side panel of figure 2.6.1,

adapted from ref. [80].

The form of the equations set out originally by Ong [105] for a 2D metal derives a

relation for the transverse conductivity, σxy from the Boltzmann model are as follows,

σxy =
e2

h

2φ

φ0
where φ = AlB (2.6.9)

where Al is the ‘Stokes’ area traced in the centre panel of figure 2.6.1 and φ is the flux

through the Stokes area and φ0 = h/e is the flux quantum. The Hall coefficient RH is
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given by,

RHB = ρxy =
σxy

σxxσyy
(2.6.10)

where, assuming symmetric scattering along the x and y directions of the conductivity

tensor then,

σxx = σyy =
e2

4π2~

∫ 2π

0
kF (θ)l(θ)dθ (2.6.11)

Contributions from isotropic scattering which affect σxy are cancelled in RH , however

anisotropic scattering at regions of Fermi surface of particular curvature do contribute to

the Hall coefficient.
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Chapter 3

Experimental and Computational

Methods

This chapter begins with descriptions of how the dHvA measurements were performed,

the equipment used and the analysis. Next, a description of the methods and code used

to calculate susceptibility is supplied and finally descriptions of the magnetotransport

measurements and analysis are detailed.

3.1 De Haas-van Alphen torque measurement

In this section the measurement of dHvA oscillations by the torque method is described.

For decades, the measurement of dHvA oscillations provided the principal method of

characterising the Fermiology of a material with only relatively recent competition from

techniques such as positron annihilation and ARPES in particular. Whilst ARPES can

provide direct maps of Fermi surfaces within the BZ, dHvA has some advantages such as

the fact that it is insensitive to surface effects such as crystal reconstruction, can determine

cross-sectional areas with a relatively high resolution and also provides useful secondary

measurements such as effective masses of the quasiparticle carriers. Some disadvantages

of the technique include the fact that dHvA cannot locate particular cross-sectional orbits

within the BZ (thus relies on secondary knowledge such as DFT calculations) and also

that the high magnetic fields could potentially affect the Fermi surface, for example by

splitting the energy levels. Regardless dHvA continues to be a reliable technique for Fermi

surface characterisation.

3.1.1 Experimental apparatus

Much of the experiment apparatus has already been described in great detail by Dr. C.

Andrew in her thesis [106]. Here we recap and also detail the points of difference.

Torque cantilever

A highly sensitive measure of torque is required to pick up the moments experienced by

the sample due to the field. For this reason a commercial piezoelectric AFM cantilever,

provided by Seiko corporation, was repurposed to measure this. The sample was placed

47
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onto the topside of the lever above the AFM tip. Previously this would be epoxied in

place but for these measurements we tried successfully with using vacuum grease which

freezes the sample in place at low temperatures. This has the added benefit of still being

adjustable and removable when warmed back to room temperature. Moreover, when it

comes to rotate the sample in the basal plane, this was possible by nudging the sample

gently without having to move the cantilever and risk breaking the lever with the sample

permanently affixed. Care should be taken not to get grease on the pivot point of the

levers since this will freeze the lever in place at low temperatures. The cantilevers feature

Gold wires

Dummy lever

Measurement
lever Sample

Figure 3.1.1: Photo of the BaFe2P2 sample mounted on the measurement lever along with a
schematic showing the full cantilever assembly. N.b. the BaFe2P2 crystals often cleave along the
[110] plane and so despite the apparent 45◦ rotation, the sample is aligned such that the lever
flexes in the [100] plane.

a second dummy lever alongside the principal lever where the sample was mounted. Instead

of measuring the voltage across the principle lever alone, we measure the difference of the

voltages between the two levers using a Wheatstone bridge which is balanced using two

500 Ω resistors. This enables some degree of correction due to vibrations and fluctuations

in measurement current and also allow for correction of magnetoresistance effects within

the levers. The circuit is balanced using a variable resistor and is zeroed as best as possible

within the noise before each measurement run.

The voltage is supplied and measured using Stanford SR830 lock-in amplifier. The

input supplied to the Wheatstone bridge first passes through a 10 kΩ resistor with an

excitation voltage of 1 V unless otherwise stated. The output is first amplified using

an EG&G 5113 pre-amplifier with a gain of ×1000 with a band pass filter which was

suitably set for the lock-in amplifier excitation frequency. All of the circuitry mentioned

above, aside from the cantilevers and leads, is kept outside of the dilution fridge at room

temperature and is away from the field centre by approximately 2-3 m.

Sample stage

The cantilever is mounted onto the sample stage which is a one axis Swedish rotator

fabricated entirely from Hysol epoxy resin. This is moved by an external stepper motor
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controlled by a computer.

The angle of the stage in relation to the field is determined by one of two orthogonal

pick-up coils mounted on the sample stage. A weak, oscillating magnetic field is generated

by a coil which is wound concentrically around the inside of the main magnet coil. The AC

coil induces a voltage in these orthogonal pick-up coils on the stage which is proportional

to the sine of the angle they are at with respect to the field. The pick-up coil voltage is

measured by a second Stanford SR830 lock-in amplifier after passing through a custom

amplifier set to ×100. The lock-in amplifier also drives the oscillating field after passing

a custom built current source. The modulating coil is designed to generate an oscillating

field of a few tens of Gauss whilst the main coil is in persistent mode [107].

20.5 T ‘Yellow’ magnet

Measurements of the oscillations were all performed in Bristol on what is informally re-

ferred to as the ‘Yellow magnet’ system. This system was built by Oxford Instruments and

can nominally operate up to 20.5 T with use of the lambda plate, an additional cooling

system for the magnet coil, although is more typically operated up to 18 T. The bulk of

Rotating 
rod

Pick-up coil

Second 
pick-up coil
(underside)

Cernox
(underside)

Contact strip

Cantilever

Figure 3.1.2: A photo of the Swedish rotator sample stage with cantilever in place and protective
cap removed.

the cryostat sits in a bath of 4He which takes the temperature down to the helium boiling

point of 4.2 K, and then the sealed sample space is additionally immersed in 3He gas in a

Heliox system. This system condenses the 3He gas at the base of the chamber and pumps

on it using a charcoal sorbtion pump to lower the sample stage temperature to ∼0.3 K for

several hours before it has to be re condensed. Figure 3.1.3 demonstrates the condensing

cycle. In general measurements are taken at base temperature but higher temperatures

can be achieved by heating the charcoal sorbtion pump thus lowering the pumping rate on

the 3He bath. This technique allows access to temperatures up to approximately 2.1 K.

Temperatures greater than this are possible by heating the sample through an electric

heater mounted on the magnet, however with our setup we do not accurately control tem-

perature as the field ramps because of complications due to magnetoresistance effects in



50 CHAPTER 3. EXPERIMENTAL AND COMPUTATIONAL METHODS

Liquid 3He

1K Pot

Sorbtion
pump

Sample space

40K 4.2K

0.3K1.2K

(a) (b)

V
A

C
U

U
M

V
A

C
U

U
M

3
H

e 
F

lo
w

3
H

e 
F

lo
w

Figure 3.1.3: The 3He condensing cycle for the 20.5 T Yellow magnet system Heliox. (a) The
sorbtion pump is heated so the 3He it contains is released and condenses into a fluid on reaching
the 1 K pot. (b) Once a significant proportion of the 3He is condensed, then the pump heater
is switched off which pumps on the liquid causing additional cooling around the sample stage to
∼ 0.3 K.

.

the measurement thermometers. Temperature is monitored at the sample by a Cernox

thermometer on the sample stage, and a RuO2 thermometer which is mounted in the

sample space on the cryostat but is in thermal contact with the tip of the sample stage

when the stage is properly seated. Care should be taken that this is the case to ensure

effective pre-cooling of the sample. Further thermometers are situated on the 1 K pot, the

sorbtion pump and sat on top of the magnet coil although the latter is only monitored

when initially cooling the magnet from room temperature. All thermometers and heaters

were controlled using two Neocera LTC-21 temperature controllers.

Data are collected by a Windows PC running custom Delphi software which queues

measurements and records data only. No analysis is performed in the collection software.

Data are saved to text files.

3.1.2 Data analysis

Angle correction

To perform angle dependent measurements, we need to first of all measure accurately the

angle between subsequent measurements and second we need to determine the angle of

the field compared to the basal planes of the crystal.

In order to tackle the first problem, the pick-up coils sampling the AC field described

earlier are used with the measured voltage begin proportional to the sine of the angle

between the coil and the AC field. By monitoring this voltage, accurate determination of

the angle between the sample platform and the field can be made and therefore the angle

between subsequent measurements.
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The absolute angle between the large DC field and the crystal planes in the sample

were determined using a post-measurement correction. Since the frequency of the quan-

tum oscillations are field dependent with turning points at the B ‖ [001] direction for

approximately two dimensional samples, an even termed polynomial up to fourth order

was fitted to the peaks. From the minima of the fits an angular offset was obtained which

gave the final correction to the above coil measurements.

The basal angle was aligned on the cantilever by eye. This was coupled with x-ray

diffraction (XRD) measurements which determined how the visual features corresponded

to the crystal axes. This leads to an estimated error in basal plane alignment of around 5◦

although we found evidence for greater misalignment in one case, detailed in the results.

Temperature correction

Effective mass measurements on particular extremal orbits rely on accurate temperature

determination at all stages of the field sweep. On the Yellow magnet system, temperature

from base of ∼0.3 K to ∼2 K is controlled by adjusting the 3He sorbtion pump temperature

and is largely independent of field effects since the thermometer regulating the sorbtion

temperature is outside of the strong field core. However if we consider figure 3.1.4, it

is evident that there are magnetic field effects on the RuO2, which is mounted in the

base of the magnet but thermally linked with the sample, and the Cernox thermometer

that sits on the sample stage. Readings from both thermometers were taken with field

sweeps from zero field up to 18 T at steady temperatures 0.30 K, 0.53 K, 0.64 K, 1.06 K

and 1.34 K. By interpolating between the data∗, the two thermometers can be corrected

to agree within ∼0.01 K. This interpolation is however limited to temperatures below

approximately 1.45 K as is shown in the figure for readings at around 1.6 K. In these

cases, the less reliable method of extrapolating the readings back to zero field using a

second order polynomial fit are used as demonstrated with the solid lines in figure 3.1.4.

In these cases the temperature is taken to be the mean of the two extrapolated values

with the differences defining the error.

Self heating effects

The resistance across the piezo-electric lever is read by driving an AC current through

it and reading the voltage across it using the Stanford lock-in amplifier. Larger currents

are less prone to noise problems, however too much current results in self heating and

subsequently the sample platform and sample could be at a higher temperature than the

nearby thermometers suggest. To ensure that this is not the case we measure oscillations

at constant temperature with a variety of driving currents. Small currents should not

affect oscillation amplitudes, but at some current threshold self heating effects will become

∗Interpolated using multiquadric radial basis functions from the Scipy Python library.
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Figure 3.1.4: Some example temperature readings (filled symbols) set using the sorbtion pump
heater. Also shown are corrections (open symbols) by interpolating to known values. RuO2

thermometer is shown as circles, Cernox stage thermometer is shown as squares. Second order
polynomial fits to the data are shown as lines extrapolated to zero to get a rough estimate of the
zero field temperature value.

apparent and the oscillations are damped as if the entire system was operating at a higher

temperature. We then resume measurements using a driving current below this threshold.

When performing this intial test, ideally the base temperature should be chosen to

be where the attenuation due temperature given by equation 2.3.13 changes rapidly with

temperature so that even small changes in temperature manifest in observable changes in

the oscillation amplitude.

Torque measurement factor

An extra factor affecting the amplitude of the LK oscillations occurs due solely to the

nature of the torque oscillation measurement. The factor is given by,

AΓ(gen) =
1

F

dF

dθ⊥
B (3.1.1)

where θ⊥ is the angle from the field direction. This can be simplified for a quasi 2d metal

to,

AΓ = | sin(θ)|B (3.1.2)

where θ is the angle from the cylinder axis (usually in the c direction). This means that

at along the cylinder axis there will be no oscillations as AΓ → 0.
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Background removal

Previous standard practice was to remove a background polynomial fitted to the field or

inverse field from the raw data before taking the FFT. With reference to figure 3.1.5, raw

torque data taken over a range of angles∗ and a strong B2 component can be observed as

a result of the AΓ term in the LK equation at angles away from 90◦ and 0◦. Figure 3.1.6

shows in the centre and right panels that subtracting a second order polynomial fitted to

the inverse field leaves a large artificial angle-dependent oscillation in 1/B in the residual

which may be misconstrued as a signal from a low frequency Fermi surface orbit, especially

since there is an apparent angle dependence – no such peak is seen for the flat curves at 0◦

and 90◦. For this reason it is recommended to subtract a second order polynomial fitted

to field rather than inverse field for torque measurements.
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Figure 3.1.5: The angle dependence of the raw torque data clearly showing a negative B2

background at 45◦ and for θ < 90◦ and a positive B2 background for θ > 90◦.

3.1.3 Measuring the spin mass

Other than beating effect from similar frequencies, the only terms in the LK equation that

cause the amplitude to drop to zero as a function of angle are the torque term, AΓ which

causes a single zero when the field is parallel with the cantilever arm and the spin term

AS
∗. By examining the amplitude as a function of angle it is possible to determine the

spin effective mass. A good determination requires more than one spin zero (i.e. a zero

not due to the torque term) to be measured since the oscillatory nature of the AS term

gives multiple solutions if we only have measured a single zero. We use n to label each of

∗See section 4.3 for full details.
∗The angle dependence of AS comes from variations in the band mass.
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Figure 3.1.6: Insets show a 2nd order polynomials fitted to simulated B2 background with
∼0.5 mV of noise, similar in scale to that of 45◦ in figure 3.1.5. Upper inset is fitted to field and
lower to inverse field. The main figure shows the resulting FFTs.

the zeros from the AS oscillations.

In practice, fitting the overall shape requires all of the LK terms to be considered

which makes free parameter fitting very difficult to converge. For these reasons, spin mass

for this investigation is found from ansatz guesses for the values which are then fitted by

inspection. Upper and lower bounds for the estimations are provided.

To the first approximation, the cylindrical approximation is used to describe the band

mass in AS , however the form of the spin term is relatively sensitive to small deviations

and so fits would be much better using a more accurate variation of band mass with angle.

Band mass was extracted from DFT results and was performed using MATLAB code

which locates the extremal areas from the corrected BZ energy dispersion at a particular

angle. Once located a small shift in energy is applied and the corresponding shift in area

is used to determine the band mass using eqn. 2.3.19. A polynomial of appropriate order

is then fitted to the curve and used in the fitting routine in place of the band mass. The

MATLAB code determines the masses with some spread in the values which caused higher

order polynomial fits to oscillate at low angles within the noise. To alleviate this, a mean

value was determined for each angle.

One final note is that the absolute value of the AS term is used to fit the data since

we analyse the height of the FFT peaks of the oscillations which are always positive and

not the oscillations directly.

3.1.4 Extracting effective mass from the temperature dependence

Of all the damping terms in the LK equation, only AT (eqn. 2.3.13) is temperature de-

pendent and so is used to determine the thermal effective mass. By measuring oscillations

at a fixed angle but with varying temperatures, the effective mass can be determined in a

number of ways.
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Basic LK formula fitting

The simplest technique to extract the thermal effective mass is to extract the amplitude

of the oscillations from FFTs of the data at various T and then perform a least squares

fit to eqn. 2.3.13. A particular problem with this approach is that it is not clear what

value of B should be used since the FFTs needs to span a field range when ostensibly the

oscillation should be measured at a particular B value. Generally the simplest thing to

do is to take the FFTs over a small a range as possible and then take the field to be equal

to the averaged inverse field, i.e. B−1
av. = 1

2(B−1
min +B−1

max).

There are two conflicting problems with this approach. First the amplitude tends to

decreases with narrowing field range meaning weak oscillations may require larger field

intervals. Secondly wider field ranges mean other attenuation factors — which are also

functions of B — affect the amplitude across the field sweep. The primary problem in

this case is the Dingle term which has an exponential dependence on B. Although the

Dingle term is not temperature dependent, the exponential dependence on the Dingle

factor changes the amplitude of the oscillations over the field range necessary for the FFT

which can affect the final amplitude. Nonetheless, simple LK fits are usually the first port

of call and serve as a first approximation to the final result. For this investigation though,

since we found some disagreement within the data, we employed a couple of additional

techniques described below to overcome this shortcoming.

Retrofitting ansatz LK formulae

One of the primary field-dependent contributions to the oscillation amplitude is the Dingle

term scattering (eqn. 2.3.15) which has an exponential dependence with temperature. The

Dingle factor, α ≡ −πpmb/eτ , can be determined by fitting a simplified version of the LK

equation,

Γsim = AD(α,B)
√
B sin

(
2πF

B
+ φ

)
(3.1.3)

to oscillations which have been band pass filtered to reduce the number of contributions

from other extremal orbits and hence the number of necessary fitting parameters. Once

we have the Dingle term and also the peak frequency for a particular orbit, simulated

oscillations are generated using the same equation but including the temperature term,

AT (m∗T , B), for a range of ansatz effective thermal masses. We then fit this to the LK

equation as described in the previous section. The mass that results from the fit is different

from the actual effective mass used as the LK fit has been affected by the Dingle term

contribution. When we find a simulated oscillation that outputs the same effective thermal

mass as the plain LK fit on the actual data we then take the ansatz thermal mass for that

matching fit to be the corrected thermal mass.

The filtering used to originally separate out the frequencies is band pass FFT using
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a Hanning window. This is adjusted in size and roll off width according to the peak.

Occasionally, the peaks are too close together to effectively filter out individually and

so two or three peaks were fitted at a time using a linear combination of the simplified

equation above.

The initial fits were filtered using an existing Delphi program and fits to find α were

performed in Kaleidagraph. Ansatz fits were found using a binary search technique using

a Python script.

‘Microfitting’ the LK formula

A second technique is to filter out the individual orbit frequency by again using an FFT

filter and a Hanning window, and this time fitting small sections of sine curve (∼ 1.5–3

wavelengths) directly to the filtered torque data. This gives a field dependent value for

the amplitude which can then be fitted to the standard AT form for many values of B.

The result is a plot of mass values against B. Theoretically, these should plateau to give

a constant value for the effective thermal mass.

Calculations were performed using a Python script to filter the data, perform the

‘microfits’ and then perform the LK fits. The script was tested using simulated data.

3.2 Calculating susceptibility

Code to calculate the Lindhard susceptibility was written in MATLAB ∗ and early versions

were tested with free electron cases in 2 and 3 dimensions with results shown in figure 3.2.1.

This matches the analytical results†. One caveat when dealing with the free electron case

is that the energy dispersion is not periodic and as such needs to be truncated at some

point in a spherically symmetric way. This truncation affects the final calculation but

provided it occurs far enough from the Fermi surface then the difference is minimal. The

results shown are for a calculated region that was a sphere of radius 1 with a Fermi surface

radius of 0.3. Values for δ(=1e-9) and ω(=1e-9) are somewhat arbitrary given that the

dispersion is simplified with ~2/2m = 1 but are given here for posterity.

The code was adapted to accept pre-generated energy dispersions as calculated with

the WIEN2k DFT software and post-processed with MATLAB code. In this case, the

dispersion is periodic and energies at the scattering vector q are obtained by simply ‘rolling’

the 3D matrix of energy values. Testing on this adapted code was performed by re-

creating WIEN2k calculations on LaFeAsO0.1F0.9 performed by Mazin et al. [36] and

then comparing our own susceptibility calculations with those in the Mazin paper. A

temperature smearing of 1 mRy was quoted which equates to a temperature of 157.88 K.

A similar number of points (55× 55× 26) were also used.

∗Full code is found in appendix B.
†See, for example, page 126 of ref. [90] and Appendix F of the same reference.
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Figure 3.2.1: The real part of the Lindhard susceptibility calculations for a free electron model
at T=0 K using the MATLAB calc_x0.m code. Top panels are for the 2D case over a 500 × 500
point grid, the bottom panels are for the 3D case taken over a 100× 100× 100 point grid. Panels
to the right correspond to slices through the surface plots on the left with red lines corresponding
to the analytical form found in ref. [84]. Calculations in the 3D case are at qz = 0.
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Figure 3.2.2 show comparisons of Reχ0(q, ω) and Imχ0(q, ω) with the published results.

For these calculations the values of δ = 1e-4 and ω = 1e-6 were determined to give the

closest results from a series of trials∗. The comparison shows that some of the finer

structure from the Mazin paper is missing from our own calculations, for example the

depression in the real part at the Γ point, however the overall shape is very similar.
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Figure 3.2.2: Right hand panels show the real and imaginary parts of Lindhard susceptibility
calculations on LaFeAsO0.1F0.9 by Mazin et al. for qz = π/c, right panels show the same calculation
performed using our own MATLAB code.

The Lindhard function is very sensitive to details close to the Fermi surface and fi-

nite sampling of the energy data can cause imperfect cancellation in the calculation —

particularly in the imaginary part. Applying a temperature smearing to the function is

useful to gloss over the finite element size in the calculation which can cause significant

spikes in the results. Figure 3.2.3 shows the smearing at a series of temperatures and that

a temperature of 158 K corresponds approximately to a smearing over 2 grid intervals at

the Fermi surface. An appropriate choice of temperature depends on the granularity of

the model as well as the expected fine detail of the results. The Mazin investigation was

into a similar quasi two-dimensional pnictide material that used a comparable number of

data points and so we also opted to use 158 K for the temperature smearing.

Smearing also occurs when a finite quasi-particle lifetime, δ, is factored in and when

the perturbing field is oscillatory with frequency, ω. These values are also not known a

priori and so we again look to the energy scale of the spacing between grid points close to

the Fermi surface for guidance.

∗There is no indication in the paper as to the values of δ and ω used in their own calculations although
we know that they are likely to be of the order of the temperature energy scale (1 mRy) or less.
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Figure 3.2.3: The Fermi distribution plotted at various temperatures. Vertical lines represent
typical grid energy spacings for a free electron distribution fitted to a portion of bandstructure for
LaFeAsO01F0.9 which rounds out just below the Fermi surface. We can see that for 158 K, the
smearing spans approximately 2 grid intervals at the Fermi energy.

3.3 Measuring charge transport

In this section the Hall measurement technique and analysis of the BSCO2201 samples is

described. Transport measurements on superconductors have been performed for over a

century now and was the technique by which superconductivity was first discovered. The

relative technical simplicity of the measurements makes transport measurements highly

appealing considering the wealth of information that can be extracted from a resistance

curve.

3.3.1 Experimental apparatus

Six probe technique

For accurate measurement of voltage, and hence resistance, across a sample, two wires are

not sufficient. The wires and contacts themselves have a resistance which is comparable or

often larger than the resistance of the sample being measured. A solution to this problem

is to instead supply the current for the voltage reading via one set of wires, and then

take the voltage reading from another set meaning that a minimum of four wires and four

contacts on the sample are required. To measure magnetoresistance we require the voltage

wires to be placed upstream and downstream of the current contacts, to measure the Hall

effect we require the wires to be placed transverse to the current. Moreover it is useful

to be able to take two transport measurements on opposite sides of the sample so as to

get an idea for the homogeneity of the sample and as well to provide some redundancy

in case of breakage. Since the BSCO2201 samples that we studied were to have both

measurements, six connection points were placed on each sample as shown in figure 3.3.1.

The connections were made with 20 µm gold wire for the current and 10 µm gold wire for

the voltage leads and attached with DuPont 4929 conductive silver paint which dries at
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Figure 3.3.1: An example BSCO2201 crystal mounted on the quartz substrate. Voltage legs are
labeled (a), (b), (c) and (d).

room temperature. As shown in the figure, the sample is raised from the quartz substrate

so that when the temperature drops and the wires and sample thermally contract at low

temperatures, there is some give so that the ensemble does not pull itself apart due to

thermal contraction.

With the four voltage legs a variety of configurations can be achieved. Measuring across

(a) and (b) is the magnetoresistance configuration, (a) and (c) is the Hall configuration.

It is also possible to measure across (a) and (d) and provided the field is reversed from

positive to negative, both the Hall and the magnetoresistance across the sample can be

extracted.

Because the connections may not be exactly aligned and because the silver paint in

practice tends to wet over the edge of the sample, magnetoresistance contributions may

be found in the Hall configuration and vise-versa. For this reason it is generally advised to

sweep both with a positive field to obtain Rpos and a negative field to obtain Rneg where

R is the resistance and separate the two out using the technique described in the analysis

section.

Later as the samples have been measured many times and thermal cycling had caused

the silver paint to become brittle, it was necessary to attach short, ∼ 2 mm, secondary

gold wires to each of the contact pads using silver paint and then attach the probe flying

leads to the end of these wires. When removing the samples from the probe, this allowed

the joins to be immersed in solvent held in the tip of a pair of metal tweezers at a safe

distance from the sample ensemble meaning the connection could be dissolved without

flexing the contact pads unnecessarily. This was done for the later measurements in the

16 T ‘Polo’ magnet where the minimisation of wire loops was not so important.

16 T ‘Polo’ magnet

The system informally referred to as the ‘Polo’ magnet is a cryostat from Cryogenic Ltd.

containing a variable temperature insert (VTI) refrigeration device that allows temper-
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Table 3.1: Operating the VTI under various temperature regimes.

Temperature range Practice

1.4 K – 4.2 K Fill VTI chamber with helium, close off
needle valve and adjust the pumping rate
to tune the temperature.

4.2 K – 300 K Empty the VTI of helium and open the
needle valve slightly, only pump a small
amount and use the sample heater to set
the temperature.

ature from ∼1.4 K to room temperature to be achieved. The VTI system is a vacuum

sealed chamber in to which the sample probe is inserted and sealed at the top. This

chamber is insulated from a bath of 4He in the main cryostat by a vacuum jacket. 4He

is admitted into the VTI chamber from the bath via an adjustable needle valve and is

pumped through the chamber and over the sample by an external roughing pump. By

almost closing off the needle valve entirely and applying a heater on the sample stage the

full range of temperatures can be achieved. In practice, a couple of temperature ranges

are defined which require different operational techniques and are specified in table 3.1.

The VTI chamber itself has an electric heater which can be operated separately and is

good for rapidly heating the system up to room temperature but is in general too coarse

for measurements.

Heating is controlled by a Lakeshore 340 temperature controller with the sample stage

heated from the heater output and the VTI heater controlled from the analogue out-

put which has been boosted via a custom built amplifier unit. Sample temperature is

monitored by a Cernox mounted onto the sample stage and VTI temperature from a

thermometer mounted inside the VTI chamber.

The sample stage can be rotated by an external stepper motor which is supplied from

a custom power source. All the instruments mentioned are controlled from a custom PC

running a Delphi program written by Dr. M. French which queues runs, records and

displays data. Some calculated values based on the raw data values are generated by the

software, however these were not configured with the appropriate inputs. For this reason

the angle and the current fields should be ignored and instead determined from raw data.

For twin voltage measurements, two Stanford SR830 lock-in amplifiers were used with

one supplying the current and measuring voltage and the second synchronised to the

first and also measuring a voltage. The current supplied was supplied through a 1 kΩ

buffer resistor in order to approximate the supply to a current source∗. The resulting

∗A current source can be approximated if (Rsample + Rwires) << Rbuffer at all T . The current is then
given by Vexcitation/Rbuffer.
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voltages were passed through two passive Princeton Applied Research model 1900 low

noise amplifiers set to ×1000 before measurement although the actual amplification for

typical resistances of 10–100Ω at 33 Hz is ×980.

The sample probe has a rotating stage and so after aligning the sample roughly by eye,

a shallow angle sweep in a low field, typically 1 T, was performed before each measurement

to make sure the sample was positioned perpendicular to the field. Some samples have

an anisotropy in the transport terms and in the case of the Hall component, the effective

field drops with the cosine of the angle of misalignment.

The magnet is superconducting and has a limit of 14 T or 16 T when using the ad-

ditional cooling of the Lambda plate. For this thesis the measurements were only taken

to 13 T to minimise the risk of a quench. The field was ramped at 1.4 T/min. The mea-

surements presented in this thesis from the 16 T Polo magnet are all taken in the Hall

configuration and are obtained by averaging both sets of contacts as described in the

analysis section.

As of Feb 2012 it was determined using a Cu sample that a positive reading of the

magnet power supply current (and field) with the leads wired up correctly (i.e. positive to

positive, negative to negative) corresponds to the magnetic field, B, in the Polo magnet

pointing upwards. This was verified with a magnetic compass.

HFML Nijmegen

To access the normal state of the higher Tc materials we require fields larger than the

13 T available in the Polo magnet at Bristol. The High Field Magnet Laboratory (HFML)

facility in Nijmegen has available a continuous field Bitter magnet which can reach 33 T.

Data from Nijmegen in this thesis was taken in May 2010 by Dr. X. Xu, I. Mouzoupoulou,

Dr. P. Rourke and Dr. A. McCollam.

The magnet used at the HFML sweeps at a rate of typically 3 T/min meaning the

temperature can drift significantly. The necessary heating supply for temperature control

was alternated between a Lakeshore 340 temperature controller which uses input from a

Cernox thermometer and a PID algorithm to supply an appropriate current or a Keith-

ley current source which supplies a fixed current. The current source was selected on a

sweep-by-sweep basis depending on which gave more stable temperatures. The analysis

compensates for small drift using a simple correction described later.

The samples were measured using Stanford SR830 lock-in amplifiers which were sup-

plying via 1 kΩ resistors with a 10 Ω shunt resistor. A 1 V excitation voltage was used for

all samples except for B00KOD1a and B16KOD1a where 2 V excitation was used instead.

The excitation frequency is set to one of the ‘magic’ frequencies∗ which in this case were

33 Hz, 77 Hz, 113 Hz and 123 Hz.

∗Frequencies that do not fall near common sources of noise or their harmonics e.g. 50 Hz from mains
supply.



3.3. MEASURING CHARGE TRANSPORT 63

Field is monitored using a calibrated Hall sensor mounted on the probe which is mea-

sured using another Stanford SR830 lock-in amplifier.

LNCMI Toulouse

To obtain the highest fields we took measurements at the Laboratoire National des Champs

Magnétiques Intenses (LNCMI) pulsed field facility in Toulouse over the course of two

separate visits. Here large capacitor banks are discharged through liquid nitrogen cooled

copper resistive magnets to achieve short (few tens of microseconds) but strong fields of

up to 60 T. Pulses at the stronger end of the scale have more potential for damaging the

magnet and take longer to cool down before the next pulse can be taken and so careful

consideration is required to the magnitude of pulse undertaken. Typically the cooling time

is around 15 to 30 minutes. The field is measured using a calibrated pick-up coil. The first

trip took place in June 2009 and involved B. Arnold, Dr. P. Rourke, Dr. B. Vignolle and

Prof. C. Proust. the second trip occurred in February 2010 and involved Dr. P. Rourke,

Dr. J. F. Mercure, Prof. N. Hussey, Dr. B. Vignolle and Prof. C. Proust.

The results are recorded using a pair of Stanford SR830 lock-in amplifiers after passing

through an active INA103 pre-amplifier set to a gain of ×200. The raw signal for the pulse

duration is recorded and the lock-in in algorithm is post-processed in software to avoid

wasted pulses due to incorrect settings. The driving current is supplied by the lock-in

amplifier and unless otherwise noted is 5 V through a 1 kΩ resistor giving a current source

of 5 mA. The driving frequency is typically very high to sample the data over the relatively

short pulse time and for these experiments is typically 60 kHz. The data is streamed via

an optical link along glass fibres (so the chamber remains electrically isolated for safety

during a pulse) to an external PC.

Cooling down to ∼ 1.4 K is possible by pumping on the helium in the magnet bath.

Higher temperatures could be achieved by pumping out the exchange gas and heating via

a Lakeshore 340 temperature controller. Although pulses are very short lived, there is a

risk of the rapidly changing field inducing a current in the leads and sample which cause

heating of the sample during the pulse. For this reason great care is taken to minimise

current loops by minimising the non-twisted portion of the wires leading to the sample.

Furthermore, the sample is physically jolted by the high field which can adversely affect

the data, for this reason, vacuum grease is carefully applied to the sample ensemble to

reduce movement.

For the first Toulouse visit, the measurements were taken in the magnetoresistance

configuration, the second Toulouse visit measured the samples in the diagonal configura-

tion.
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3.3.2 Sample size determination

The length and the width of the samples were determined from calibrated optical micro-

scope screen captures. The thickness was determined post transport measurements with

the help of Dr. P. Heard using a FIB. This images samples by rastering a focused beam

of ions onto the sample surface and measuring the amount of ejected electrons or ions

form the image. This process causes electrical charging of the surface which can in turn

adversely affect the path of the highly focused incoming ions and so the sample to be

imaged must be earthed in order to remain electrically neutral. For these samples, a line

of 4929 silver paint was drawn between on of the contacts and the sample mounting puck.

3.3.3 Data Analysis

Isolating Hall and magnetoresistance (MR) components

When measuring transport in a sample, there will always be contributions from both the

MR and the Hall components due to imperfect geometry of the voltage pick up points.

Since the Hall component reverses sign as the polarity of the field reverses whereas the MR

component is independent of field polarity, the Hall and MR components can be separated

out using the following relations,

RHall =
1

2
(Rpos −Rneg) (3.3.1)

RMR =
1

2
(Rpos +Rneg) (3.3.2)

where Rpos and Rneg are the resistances measured for the positive and negative field

polarities. This requires data to be taken from the positive field maximum down to the

negative field maximum and so for example with the Toulouse pulsed field apparatus, two

pulses are required for each measurement.

Correcting for temperature variations

Figure 3.3.2 shows a comparison of typical field sweeps for the LNCMI and Nijmegen

facilities and the Polo magnet. The LNCMI pulse length is ∼ 150 ms and as such is not

typically subject to slow temperature drift throughout the duration of the pulse. However

the positive and negative pulses are typically taken with at least a 30 min interval in-

between pulses meaning the positive and negative pulses may not be at precisely the same

temperature. As such, a small offset is applied to bring the zero field data into line between

positive and negative pulses. For the longer sweeps such as the Nijmegen data sets, an

additional offset was applied to the measurement which is proportional to the temperature

as detailed below,

Rcorr. = Rmeas. + F (Tbase − Tmeas.) (3.3.3)
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Figure 3.3.2: From left to right: Typical field sweep profiles for a pulse at the LNCMI, Toulouse,
a continuous positive sweep at the HFML, Nijmegen and single positive upsweep for the Polo
magnet, Bristol.

where Rcorr. is the corrected resistance, Rmeas. is the measured resistance, Tbase is the

temperature that the temperature that the resistance values are converged towards and F

is an empirical scaling factor that brings the upsweep and downsweep data into line. The

empirical factor was determined by inspection using the following method.

1. Take data where there is a clear component that is due to the temperature drift

and find the appropriate factor so that it disappears. Take these data as reference

benchmarks.

2. Where the temperature component is not so clear, use the reference data and make

an informed estimate of the factor based on resistance vs. temperature curves in

zero field and 13 T

The same factor is applied to both the positive and negative sweeps to avoid introducing

artificialities into the Hall gradient. For the Polo data the temperature control was such

that no correction was necessary.

Field lag correction

The Polo magnet has no sensor to measure field at the sample, with the field values being

calculated from the power supply current. In the data there is evident hysteresis in all

sweeps and is illustrated in figure 3.3.3 which suggests that the actual field lags slightly

behind the indicated field possibly due to induction effects in the magnet coil and/or the

power supply. To correct for this, the upsweeps and downsweeps were shifted towards

each other until they overlapped, typically each by around 0.2 T. Any values which were

corrected to less than 0 T or more than 13 T were then not used in the analysis.

Combining up and downsweeps

For all the data values there is an upsweep portion and a downsweep portion which overlap

and are averaged together to reduce noise. However many portions of data have regions
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Figure 3.3.3: An example of the measured voltage of separate up and downsweeps which demon-
strate the lag in actual field compared to the indicated field.

which drift due to changes in the out-of-phase component or anomalies such as spikes and

so in these cases the regions are recorded in a configuration file and the scripts that combine

the sweeps ignore the problem regions and instead use data from the counterpart sweep

in isolation. Similarly, when hysteresis is encountered in the pulsed data, by convention

the upsweep is ignored since it is more rapid than the downsweep which generally results

in more spikes and out of phase problems.

To obtain the Hall and MR components using equation 3.3.1 we need to obtain compa-

rable data points with shared field values. To do this one of two technique was employed.

For the high-field data, this is done by binning the data and taking the average of the

values in each of the bins so that they share the same field values. The data taken from

the Polo magnet is linearly interpolated to a predefined set of field values.

Linear fits to Hall data

Hall data for all samples were fitted using a standard linear least squares fit which was

performed using Python for the Polo data and Delphi for the high-field data due to the

different preprocessing requirements described in the previous section. A cutoff is specified

so that only the data above the cutoff is fitted in the region where the linear behaviour is

recovered. The cutoff value is found by inspection of the Hall data with reference to the

MR component. The precise point where linear behaviour is recovered is not always clear

and so two cutoffs were specified which defined the upper and lower bounds for the start

of the linear region. The limits contribute to the error in the Hall gradient with the final

gradient being taken as the average of the fits from the two cutoff limits.
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Normalising the high field data

The Polo data was taken in the Hall configuration and so corresponds to the true Hall

voltage, whereas the data from the first visit to the LNCMI was on sample measured in

the MR configuration and so represent some unknown fraction of the true Hall voltage.

Moreover, the rest of the high field data was taken in the diagonal configuration meaning

the voltage path was over a different portion of the sample to the Hall measurement which

again means the Hall voltage is scaled by some factor. For these reasons the Polo magnet

measurements were taken as the canonical absolute values for the Hall data, with the high

field data scaled so that concurrent data at higher fields aligned, this process along with

the variation between fits using the two different cutoff bounds define the error bars in the

data.

3.3.4 Determining the doping

Three techniques have been identified for determining the doping for this thesis. The

most simple and well known method for determining the doping of a material utilises the

so-called ‘universal’ Tallon relation [75] which links Tc/Tc(max) to p as follows,

Tc/Tc(max) = 1− 82.6(p− 0.16)2 (3.3.4)

This relation was established based on measurements of La2−xSrxCuO4 (LSCO) which

exploit the direct relation between Sr content and the doping (assuming stoichiometric

oxygen).

The second technique, particular to BSCO2201, was published by Ando et al. [76]

in 2000 where samples of BSCO2201 were compared with Hall measurements of other

cuprates where the carrier concentration is more easily determined, in particular LSCO

was used again. The results lead to a very different relation between Tc/Tcmax which

confined superconducting samples to a much narrower range of dopings∗ and is given by

the following relation,

Tc/Tc(max) = 1− 254.3(p− 0.16)2 (3.3.5)

which was extracted from the Ando paper based on dopings determined by La concentra-

tions.

There is however some doubt as to whether it is appropriate to compare LSCO and

BSCO2201 measurements across the superconducting dome, especially with regards to Hall

measurements, given the proximity of the van-Hove singularity in LSCO which should lead

to a depression in the apparent carrier density above p = 0.18.

The final technique is by comparing instead BSCO2201 and Tl2201 which have very

∗The justification being that increasing disorder suppressed Tc as you move away from optimal doping.
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similar structures, and van-Hove singularities at much higher doping than LSCO∗ . Dop-

ing in Tl2201 has been well characterised in the overdoped side through recent dHvA

experiments [109] which maps well to where the majority of our BSCO2201 samples lie.

Here the doping is determined using the Tallon relation for underdoped to slightly over-

doped samples with Tc/Tc(max) down to 0.71, below this value a linear relation is used:

Tc/Tc(max) = 2.390 − 7.696p. Again some a priori knowledge of the approximate loca-

tion (i.e. overdoped or underdoped) on the superconducting dome is required and further

investigation may be required to determine which side of the dome a sample lies.

∗Tl2201 has a van-Hove singularity at a much higher doping than even BSCO2201. At p = 0.26 (or
rather p = 1.26), ARPES measurements have shown the van-Hove singularity in Tl2201 lies a few eV below
the Fermi energy [108].



Chapter 4

dHvA measurements on BaFe2P2

This chapter presents results based on the motivation outlined in section 1.2.4 including

definitive measurement of the Fermiology of BaFe2P2 and extensive data and analysis in

to the thermal and spin effective masses. The nesting conditions along the (π, π) vector

were investigated through calculations based on insight gained from the measurements and

partial nesting was found along q = (π, π, kz) where kz = 0, π/2, π, 3π/2, 2π. Given BaFe2-

P2 is not superconducting this suggests that partial nesting is not a sufficient condition

for superconductivity.

4.1 Sample synthesis

Several samples in the BaFe2(As1−xPx)2 series were measured using dHvA at Bristol in

the ‘Yellow magnet’ system described in section 3.1.1, however this chapter focuses on

a sample of BaFe2P2. The sample is a single crystal and has approximate dimensions

77 µm× 54 µm× 15 µm as determined by optical microscope∗. The crystal was grown by

T. Shibauchi in Kyoto using the following technique detailed in Kasahara et al. [39].

A stoichiometric mixture of Ba flakes and FeP powder was placed in an alumina crucible

and sealed in an evacuated quartz tube. It was heated up to 1150-1200 ◦C, kept for 12 h,

and then cooled slowly down to 800 ◦C at the rate of 1.5 ◦C/h. Platelet crystals with shiny

[001] surface were then preferentially extracted and characterised to find single crystals

of high crystalline quality. The size of the sample precludes resistivity measurements,

however it was possible to examine the samples though Laue x-ray diffraction.

4.2 X-Ray Diffraction

The crystalline axes of the sample were determined by x-ray diffraction (XRD) on a Kappa

Apex II single crystal diffractometer by Dr. I. Guillamon and Prof. A. Carrington with

the aid of Dr. M. Haddow. The sample was mounted on a glass rod and held in place

using vacuum grease. Clear diffraction spots are visible on the example scans shown

in figure 4.2.1 although there is some evidence of a second, misaligned phase with the

doubling of the spots in a small number of the scans such as the one in the top left panel.

∗An image of the crystal mounted on the AFM cantilever is shown in the experimental methods chapter.
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There is also further evidence of secondary phases as some peaks are doubled up in the

dHvA data presented later. We have no reason to believe however that these speculated

misalignments are significantly affecting the rest of the body of results nor that they affect

the conclusions in any appreciable way.

Perhaps surprisingly, the straight edge of the crystal was found to lie along the [110]

direction and not along the unit cell axis. This was found to be the case for a number of

other BaFe2(As1−xPx)2 crystals which were x-rayed later in the year.

Figure 4.2.1: Panels show example diffraction patterns of the BaFe2P2 sample. Left shows a
zoomed portion of doubled peaks indicating that there may potentially be a misalignment within
the crystal. Right inset shows the labelled crystal axes superimposed on the sample which is
mounted on a glass rod.

Lattice parameters are determined using the Apex II software and are presented in

table 4.1 along with comparisons to two previous measurements found in the literature.

The result agree within the error.

Table 4.1: Lattice parameters from XRD measurements compared with literature.

Source a (Å) c (Å) zP (% c)

X-ray 3.86(4) 12.42(9)
Rotter et al. [110] 3.8435(4) 12.422(2) 34.59(1)
Mewis et al. [111] 3.8400 12.4420 34.560

4.3 Angle dependent measurements

4.3.1 Determining experimental parameters

Preliminary measurements showed very strong dHvA oscillations in comparison to other

samples which begin at relatively low field with an example of the raw data shown in

figure 4.3.1. Since it is not clear from the raw torque data where the oscillations begin,

Fourier transforms were taken with small (1 T) field intervals — the interval where a clear

signal is present marks the onset of oscillations. An FFT of the data for the ranges 4-5 T,
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5-6 T and 6-7 T are shown in the insets of the figure. The range 6-7 T clearly shows the

strong peaks at around 1500 T and 2450 T, with the higher frequency peak disappearing

in the 5-6 T range and both peaks disappearing in the 4-5 T range. Further refinement

suggests the onset of appreciable oscillations is around 5.6 T for the strongest peak. The

field was ramped between 6 T and the safe maximum of 18 T for the vast majority of

measurements bar some sweeps where the magnet was ramped to or from 0 T following or

preceding shut-down of the magnet.
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Figure 4.3.1: An example of the torque data taken with field aligned at 26◦ on the reverse side
of the [001] to [100] angle sweep detailed later. Insets show a FFTs of the data between 4-5 T,
5-6 T and 6-7 T respectively. These intervals are marked on the main plot as A, B and C.

Figure 4.3.2 shows some example Fourier transforms of data taken at various field

sweep rates and plotted with the frequencies shifted arbitrarily for ease of comparison. The

difference in amplitude between the sweeps at 0.05 Tmin−1 and 0.1 Tmin−1 is less than

1 % whereas the difference when sweeping at 0.2 Tmin−1 is nearly 5 %. Unless otherwise

stated, subsequent sweeps were performed at 0.15 Tmin−1 at the edge of where the sweep

rate makes a significant difference in amplitude.

In order to make a reasonable determination of the Fermi surface of a material, an

appropriate number of angle sweeps need to be made to adequately constrain the shape of

the Fermi surface. Measurements were taken at one degree intervals from H ‖ [001] down

to H ‖ [100] and from H ‖ [001] down to H ‖ [110] which, in this system of tetragonal

symmetry map to six other symmetric directions.

In general, runs were performed with an excitation voltage of 1 V. To ensure that

there were no self heating effects, runs were also performed with an excitations voltage of

0.5 V and 2 V at T ≈ 0.6 K (where the LK curve is steep) and no change in oscillation

amplitude due to heating was observed. All dHvA measurements described on BaFe2-

P2were performed by the author at Bristol in the 20.5 T ‘Yellow magnet’ system.

The magnetic field was alternately ramped up and then down meaning subsequent
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Figure 4.3.2: FFTs showing the peak from the smaller branch of band 3 taken at, A: 0.05 Tmin−1,
B: 0.1 Tmin−1 and C: 0.2 Tmin−1. The peaks are arbitrarily shifted in frequency for ease of
comparison. Measurements taken with H at 10◦ from [001] in the [110] direction.
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Figure 4.3.3: The plots show the F cos θ for the α branch in the [100] direction. Top panel shows
the branch with the hysteresis due to field sweep direction, the bottom panel shows the data after
the linear adjustment described in the main text. Arrows at point (a.) show how the points were
shifted.
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measurements were generally performed with the magnetic field ramping in opposite di-

rections. Although in theory this should not affect the results in any way, subsequent FFT

peaks appeared to alternately be shifted by up to ∼ ±21 T with the magnitude of the shifts

being roughly proportional to frequency. Assuming that the shifts were an artefact of the

measurements, possibly due to slight shifts in the measured phase due to induction ef-

fects in the magnet, a linear correction determined by visual inspection was applied of

Fcorr. = 3 + 10
8000Fmeas. for the sweep in the [100] direction and Fcorr. = 0 + 21

8000Fmeas.

and Fcorr. = 0 + 18
8000Fmeas. for the two sets of measurements performed to complete the

sweep in the [110] direction. Figure 4.3.3 shows an example of these hysteric shifts and

the subsequent correction applied.
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Figure 4.3.4: FFT after a second order polynomial background was subtracted at various labelled
angles between [001] and [110]. The labels for peak identification are explained in the next section.

Figure 4.3.4 shows three example FFTs which show peaks from all the principal bands

identified the next section. They also show first and second harmonics∗. The low frequency

region in figure 4.3.4 shows noise from the cantilever, but according to DFT fits performed

in the next section, this region also likely contains signal from the minimum of the inner

hole band. Given that the signal from electron bands is generally small due to high

scattering rate, we were not able to extract a convincing Fourier peak.

Figure 4.3.5 shows the FFT frequency of peak data multiplied by cos θ after having

the angle determined as described in section 3.1.2. Signal can be observed up to relatively

high angles with peak observed almost up to 80◦ in the [110] direction which, along with

the observation of third harmonics, and the onset of oscillations in relatively low field is

∗Third harmonics were also identified in other FFTs, these are shown in figure 4.3.5.
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testament to the high quality of the crystal.
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Figure 4.3.5: Peaks identified by varying the field range, window type and background polyno-
mial. Left panel shows data taken with the field parallel to [001] down to [110], the right panels
shows [001] to [100].

The left panel in figure 4.3.6 shows the measured rotation data (circles) for the plots

towards the [100] direction and in addition the data from the x = 0.63 data in the

BaFe2(As1−xPx)2 series multiplied by amounts commensurate to the expected shifts in

the Shishido paper [20] (black squares). We can see that while the size of the areas

changes between the two values, the overall shape of the x = 0.63 data matches reason-

ably well with the data for x = 1 for bands 2, 3 and 4 at least. Assuming that nothing

exotic happens in the intermediate range, we can extrapolate the shape of these Fermi

surfaces across the range by applying the known electron Fermi surface areas and the

compensation condition. This is explored further in the next section.

Rigidly shifting the calculated DFT energies

The right panel of figure 4.3.6 shows the DFT calculations performed using the local aug-

mented plane wave method plus local orbits method method including spin orbit coupling

as implemented in the WIEN2k package [94]. The calculations in the thesis was from

based on calculations originally performed by Prof. T. Carrington and recalculated by

the author. The unit cell used was that measured by Mewis et al. which are listed in

table 4.1 and the subsequent DFT calculations were processed into rotation plots using

MATLAB code. Results are shown superimposed over the measured data. By factoring

the frequency with cos θ it becomes clearer which of the orbits is a maximal extremum

and which is a minimal extrema. Using this knowledge as well as clues from the Fourier

amplitude of the measured data, it was possible to separate out individual bands which

have been colour coded and labelled — according to literature convention — as specified
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Figure 4.3.6: Left panel shows the measured data with points overlaid from
BaFe2(As0.37P0.63)2 [22] with the α and γ frequencies multiplied by 1.33 and β frequencies multi-
plied by 1.19 commensurate with known shifts from literature. Right panel shows DFT calculations
(lines) overlaid on top of measured FFT data (circles). Data is colour coded according to the cor-
responding bands. Points in grey are harmonics.

Table 4.2: A summary of the Fermi surface labelling used.

Band Num. Label Colour Type

1 δ Orange hole
2 γ Red hole
3 β Blue electron
4 α Green electron

in table 4.2. Minimal extrema are sub-labelled 1, maxima are sub-labelled 2. The points

marked in grey are the harmonics which were identified by overlaying the measured data

on itself after doubling and tripling of the frequency.

As with previous DFT calculations in the BaFe2(As1−xPx)2 series, the calculated values

are consistently higher than the measured values [20]. The exception in this case is γ2

which is not much different from the calculated values.

As is shown in the right panel of figure 4.3.6, the rotation plots from the DFT cal-

culations match up qualitatively with the data but do not match up quantitatively –

the calculations overestimating electron bands with respect to the size of the measured

extremal orbits.

In order to obtain the correct shape of Fermi surface, the DFT calculations need to

be tweaked. One technique is to apply small band-specific rigid energy shifts, which, in

most cases is enough to bring the DFT in line with the experimental data. Figure 4.3.7
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Figure 4.3.7: dHvA frequencies multiplied by cos(θ). Solid lines are rigidly shifted DFT calcula-
tions, open circles are measured data. H field directed along [001] towards (a.) [001]→ [100] and
(b.) [001]→ [110].

Table 4.3: Rigid energy shifts required to match the DFT calculations with the measured data.

Band Energy Shift (Ry)

1 -0.0083
2 Wide 0.0

Narrow -0.0038
3 0.0043
4 0.0050

shows the rotation plots which rotate towards both the [100] and [110] directions along

with appropriately shifted calculations. Table 4.3 lists those energy shifts.

Band 2 in this case has two separate shifts specified in two different regions of the BZ.

The rotation plot for the wider orbit located at the edge of the BZ was calculated with no

energy shift and the narrow part of the Fermi surface around the Γ point was calculated

with a shift of 0.0038 Ry. This provides a reasonable match for the rotation plot where we

can apply the shift to the two regions discretely, however this proves problematic when we

wish to study intermediate areas since it is not clear how the Fermi surface varies between

the two regions. A technique for applying appropriate energy shifts throughout the BZ is

explored in the next section.

For the [100] direction it became apparent from the fact that the DFT and the measured

curves were qualitatively different that the field was not perfectly aligned with the [100]
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Figure 4.3.8: Portion of the measured FFT peaks taken towards the ‘[100]’ direction. Superim-
posed is angle plots calculated from DFT. Solid is calculated for the field rotating down to [100],
dotted is rotated down to 10◦ off [100] in the basal plane.

axis of the sample. Figure 4.3.8 shows how the measured data (circles) does not align

well with the plots calculated for rotations towards [100] (solid) but does align well with

plots towards an axis which is rotated 10◦ within the ab-plane from the [100] direction. A

10◦ misalignment is within the estimated basal alignment error for the microscope images.

The data will continue to be labelled as in the (100) plane however for convenience.

In the first place, these shifts were applied as they conveniently and effectively corrected

the Fermi surface energies, however the question arises as to whether there is any physical

significance to be attached to them. The technique of rigid energy corrections has been

applied to previous measurements on LaFePO [8] and SrFe2P2 [11] both of which are highly

two dimensional systems that exhibit relatively strong nesting characteristics. This is in

contrast with measurements on CaFe2P2 [9] which has a highly three dimensional Fermi

surface and no nesting vector. Furthermore the bulbous area of the three dimensional hole

surface in BaFe2P2 which does not nest requires no shifting of the Fermi surface to match

DFT calculations, whereas the nested neck portion does require a shift. This correlation

between nesting and shifts in calculated energy make the spin-density-wave fluctuations

that are associated with the nesting phenomena an obvious candidate for the cause of the

discrepancy between DFT calculation and experiment.

Shifting the DFT calculations proportional to orbital character

The WIEN2k package can output weighted contributions to the energy values at a par-

ticular k site in the BZ broken down by orbital character. Figure 4.3.9 shows the orbital

character for for each of the bands along the path of Fermi surface contour in a (110)

slice through the BaFe2P2 BZ as a function of kz. The top row of plots show the char-

acter broke down by atomic contribution, the middle row is broken down by the s, p, d

and f contributions to the iron contribution and the bottom row breaks down the iron d

character into its sub orbitals.

The interstitial regions account for about 20–32 % of the electron band character whilst
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Figure 4.3.9: Partial orbital characters along the Fermi surface contour in the (110) slice (shown
in insets) vs. kz. Top row is the character broken down by each atom, middle row is the iron
contribution broken down into the l orbital contributions, the bottom row is the iron d orbital
contributions broken down into its suborbitals. The leftover region in the top row is made up of
the interstitial regions outside of the muffin tin spheres which are not associated with any particular
atom.
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the hole bands range between 8–18 % with band 1 being more mobile around the Γ point

whilst band 2 being higher around the Z point at the top edge of the BZ.

We can see the vast majority of Fermi surface character is due to the iron atomic

contributions with some phosphor for bands 2 and 3 which corresponds well to the notion

of FeP conducting planes. For all the bands, the overwhelming majority of the contribution

from the iron atoms is from the d orbitals and so other contributions are ignored.

Band 2 has very little basal-plane dxy and dx2−y2 character close to the Fermi level

but shows a significant amount of dz2 character at the wide region of the Fermi surface

and dxz+dyz character at the narrow region. Evidently, energy shifts could be applied

which are scaled to either the dz2 and dxz+dyz orbital character in order that we obtain a

smooth energy shift transition between the narrow and wide regions discussed previously.

There is a sudden jump in the data for at around the kz = 0.5 point for the hole bands

and at a slightly higher kz for the electron bands. This is due to the fact that for non-

spin orbit calculations the hole (electron) bands cross at around kz = 0.5 and kz = 1.5,

however for the spin-orbit case the bands generally avoid crossing by switching the band

assignment to the band that would ordinarily cross over. Hence at kz = 0.5 the band

character for band 1 switches to that of band 2 (and vice-versa) and similarly between

bands 3 and 4.

Energy shifts were applied across the full three dimensional BZ for band 2 using the

following two scalings which were determined by trial and error fitting of the data,

dz2 : ∆ε = 0.002− 0.0052

[
1− ε− 0.033

0.2205− 0.033

]
dxz+dyz: ∆ε = 0.002− 0.0052

[
ε− 0.0946

0.3135− 0.0946

]
Note that these scalings ensure that the energy shift applied varies between -32 mRy and

2 mRy which are slightly different from the values applied when rigidly shifting the band.

This is due to the fact that the Fermi surface area measured in the narrow region is affected

more and more by the size of the Fermi surface in the wide region (and vice-versa) as the

azimuthal angle gets higher. The calculated area deviates from the measured area which

results in the crossing of the calculated rotation plot with the measured rotation plot

shown in the first panel of figure 4.3.10. So when the rigid shifts were being determined,

values were chosen which best lines up along the full length of the curve – one which will

be slightly lower than if we were to match the plots exactly at θ = 0◦.

The second and third panels of figure 4.3.10 show the rotation plots calculated with

the energy shifts applied proportional to dz2 and dxz+dyz orbital character respectively.

We observe a much better alignment of the measured and calculated data for all angles.

Figure 4.3.11 shows the Fermi surfaces before and after shifting using the rigid energy

shifts for bands 1, 3 and 4 and using shifts scaled to dz2 orbital character for band 2.
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Figure 4.3.10: dHvA frequencies for band 2 multiplied by the cosine of the angle of the H field. H
field directed along [001]→ [110]. Open circles are measured data, solid lines represent (a) rigidly
shifted DFT calculations, (b) DFT calculations shifted proportional to dz2 orbital character, (c)
DFT calculations shifted proportional to dxz+dyz orbital character.

Figure 4.3.12 shows the assembled BZ for BaFe2P2 from the corrected DFT calculations

and figure 4.6.1 shows the shifted band structure for the bands that cross the Fermi level.
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Figure 4.3.11: Comparison of Fermi surfaces according to DFT calculations both before and
after shift corrections are applied. Rigid shifts are applied to bands 1, 3, 4 and shifts proportional
to dz2 character are applied to band 2.

The final corrections show the DFT calculations being adjusted in size only for the

electron and inner hole surfaces with overall shrinking of volume, the outer hole surface is

adjusted in shape as well. Volume calculations as a percentage of the BZ are given for each

of the Fermi surfaces before and after shifting in table 4.4, The volumes compensate better

before the shifts by a small amount (∼0.4 %) with the shifts proportional to dxz+dyz being

slightly closer to the unshifted volume.
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Figure 4.3.12: Fully assembled Fermi surface in the first BZ of BaFe2P2 as determined by DFT
calculations corrected by either rigid energy shifts (bands 1, 3, 4) or shifts proportional to dz2

character (band 2).

Table 4.4: Volumes of the shifted and unshifted Fermi surfaces as a percentage of BZ volume.

Band Unshifted Shifted dz2 Shifted dxz+dyz

1 5.54% 2.28% 2.28%
2 10.37% 9.74% 9.64%
3 (-)9.58% (-)7.89% (-)7.89%
4 (-)6.39% (-)4.49% (-)4.49%

Total -0.065% -0.352% -0.450%
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4.4 Interpolating the BaFe2(As1−xPx)2 series Fermiology

Although dHvA measurements were taken by the author on other members of the BaFe2(As1−x-

Px)2 series as mentioned at the start of this chapter, clear oscillations were not consistently

found for all the electron pockets and no oscillations were found for the hole pockets as was

the original aim. For this reason we refer to previous results which have shown convincing

menasurement of both the hole and electron pockets.

We can use existing literature measurements of the Fermi surface at x = 0.38 from

Yoshida et al. [24], x = 0.63 from Analytis et al. [22] and a range between 0.4 < x < 1.0

from Shishido et al. [20] to obtain an approximate relation for the size of Fermi surface

orbits across the BaFe2(As1−xPx)2 series. Figure 4.4.1 shows the maximum and minimum

orbit sizes with the field along the c-axis from these papers along with data presented in

this thesis. It may be possible to apply a linear scaling to determine the intermediate
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Figure 4.4.1: Left panel shows the trend in electron orbit size at θ = 0◦ over the series, right
panel show the hole orbit size trends. Dotted lines show linear fits to the data.

orbit sizes however there are a number of assumptions that need to be made.

Firstly we cannot apply Vegard’s law beyond a structural transition in the series mean-

ing we cannot extrapolate to the orthorhombic antiferromagnetic state at the low x end

of the phase diagram. The ARPES measurement by Yoshida et al. at x = 0.38 roughly

coincides with the edge of the orthorhombic transition as shown in figure 1.1.5 but was

found to be tetragonal and so we can use to define the lower limit for the extrapolation at

low temperatures.

There is also the problem of the third hole surface around the Γ point which appears in

DFT calculations. Although it has not been observed in any of the measurements and we

might expect smaller orbits to have a stronger signal∗, the hole pockets in these materials

have strong kz dispersions meaning the Awarp factor damps the signal. Also it may be

∗Smaller orbits complete a greater number of orbits for a given mean free path as explained in sec-
tion 2.3.3.
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Table 4.5: Linear relations to determine orbit sizes. Coefficients are of the form F = mx+ c.

Orbit m c

δmax 0.081 1.169
δmin -1.766 1.841
γmax 4.339 3.111
γmin 0.698 0.071
βmin 0.749 1.352
βmax 0.811 1.489
αmax 0.495 0.646
αmin 0.946 0.404

close in size and shape to other hole surfaces making it difficult to pick out with current

ARPES resolution.

It also should be noted that a linear extrapolation of δ suggests that it will become

more three dimensional as it goes below x = 0.38, however this does not appear to be

supported by the DFT results which show it remaining quasi-two dimensional.

With the above (many) caveats in mind, we can determine a series of linear laws which

would approximately determine the orbit sizes for 0.38 < x < 1.0 by applying fits to the

data in figure 4.4.1. The results of these fits are given in table 4.5.

4.5 Harmonic parametrisation of the Fermi surface

An analytic form for the Fermi surface can be obtained using a harmonic expansion of

sin and cosine functions as described by Bergemann et al. [112]. Primarily this was done

so as to provide a convenient way to reconstruct the Fermi surface without necessitating

DFT calculations for future use in models. The expansion is as described as,

kF (φ, κ) =
∑
µ,ν≥0
µeven

kµν cos νκ

cosµφ (µ mod 4 = 0)

sinµφ (µ mod 4 = 2)
(4.5.1)

where kF is the Fermi surface in k-space, κ = ckz/2, c is the unit cell height and φ is

the polar angle. A slightly different set of functions would be necessary to fit the electron

Fermi surface in the adjacent corners due to the screw symmetry, however only one electron

sheet was fitted.

The two dimensional fits were performed using a least square fitting routine using

MATLAB on the DFT data shifted as described in the previous section. The number

of terms for the fits were increased until the residuals ceased to change appreciably. Fit

parameters are presented in table 4.6. Due to the skewed nature of the kz dispersion of
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the outer hole surface 20 terms were necessary to obtain a reasonable fit to the corrected

DFT data however electron surfaces could be fitted well with 9 terms and the inner hole

surface with 10 terms. The final analytical function was then used to create an ‘energy

dispersion’ on a discrete grid of k-points such that plotting an isosurface at ε = 0 Ry

correctly recreated the Fermi surface∗. Using this dispersion in the existing MATLAB

code, extremal orbits were then calculated as a check of how well it matches the original

data. The results of this are presented in figure 4.5.1. As you can see, although the fits

were to the modified DFT calculations, the fits are also reasonably accurate at modelling

the measured data.

Angle (deg.)

F
C

o
sθ

 (
kT

)

[100]

Figure 4.5.1: Rotation plots for the harmonic fits calculated from the c-axis down towards [100].

4.6 Susceptibility calculations

To verify that we do get enhanced susceptibility, which may lead to a spin-density wave

state, the q-dependent susceptibility – described in section 2.4.1 – was calculated using

code developed by the author and listed in appendix B. Since the Lindhard function takes

the sum over all energies in the BZ, there may be some concern that the rather crude

adjustments to the DFT calculations performed in the previous section – which have only

been verified to be correct for energies at the Fermi surface – may give erroneous results.

However the nature of the Lindhard function means that far greater weight is given to

energies that are near the Fermi surface. Figure 4.6.1 shows the ‘spaghetti plot’ with the

energies tweaked as described in the previous section. We see that there are discontinuities

∗The resulting dispersion was not physical and simply served as a computational structure to pass the
shape of the Fermi surface to the MATLAB code, energy values at k-point away from the Fermi surface
are somewhat arbitrary.
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Table 4.6: Harmonic expansion fit parameters performed on the shifted DFT Fermi surfaces.

Factor α β γ δ

k00 1.90796e−1 2.59538e−1 2.58282e−1 1.35031e−1

k02 -1.32049e−2 -1.01956e−3 0 0
k04 9.24279e−4 4.28603e−4 -1.01085e−2 1.95065e−3

k20 4.30196e−4 -1.51226e−4 -1.46090e−1 -6.75502e−2

k22 3.23365e−4 1.91896e−4 0 0
k24 -9.30815e−2 -4.23320e−2 1.13859e−2 -5.31077e−3

k40 -1.64499e−2 5.02893e−3 6.15148e−2 -5.70262e−3

k42 -1.49159e−2 -7.07858e−3 0 0
k44 -6.14076e−4 -2.86767e−4 -9.49526e−3 5.28982e−3

k60 0 0 -1.85170e−2 -1.22242e−3

k64 0 0 -9.04247e−4 -2.82851e−4

k80 0 0 -6.79607e−3 -2.22767e−3

k84 0 0 1.61746e−3 -1.90500e−3

k100 0 0 1.07007e−2 0
k104 0 0 7.97948e−4 0
k120 0 0 -3.89161e−3 0
k124 0 0 -1.57292e−3 0
k140 0 0 -1.81052e−3 0
k144 0 0 3.81207e−4 0
k160 0 0 3.04268e−3 0
k164 0 0 1.14420e−3 0
k180 0 0 -1.07753e−3 0
k184 0 0 -4.92181e−4 0
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in band 2, most notably between Z and Σ1, due to the correction applied proportional to

the dz2 character, however these are reasonably far from the Fermi level and so should not

affect the calculations significantly.
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Figure 4.6.1: Band structure for the bands that cross the Fermi surface shifted to fit the dHvA
data. (a) and (b) give an idea of the k-point mesh density of the WIEN2k calculation at the Fermi
surface. Inset shows the path around the BZ.

Calculations were performed using the calc_x0.m code described in section 3.2 using

a 93 × 93 × 93 grid of energy values that covered the first BZ. We will need to smooth

over the granularity of the WIEN2k band model since for the imaginary part at least, the

calculation is very sensitive to slight imperfections in cancellation near the Fermi energy.

Referring to figure 4.6.1, there are two regions in the marked (a) and (b) which show points

around the Fermi level as they are spaced in the 93 × 93 × 93 model. (a) is particularly

steep and has a ∆ε/∆pt. = 0.0760 eV and (b) is more typical of the gradient at the Fermi

level and has ∆ε/∆pt. = 0.0368 eV. So the energy scale that will need to compensated is

∼2-5×10−3 Ry.

Susceptibility was calculated for a wide range of magnitudes of δ and ω in order to

gauge qualitative behaviour with the resulting plots shown in figure 4.6.2. Both the real

and imaginary parts undergo qualitative changes as the parameters are adjusted above

the spacing corresponding to the typical gap in energy between points. The imaginary

part also undergoes a qualitative change when ω falls below 1×10−5 Ry and there is also

an increase in noise when δ falls below a similar energy threshold. We continue using

δ = 1 × 10−3 and ω = 1 × 10−3 which correspond approximately the energy scale of the

spacing as well as the energy scale of the temperature smearing.

The upper panel of figure 4.6.3 shows the quantified plots for the real and imaginary

parts of the susceptibility at the chosen values of δ and ω. The contour plots in the insets

show the two-fold symmetry due to the choice of kz = π. Unlike LaFeAsOF where the

two dimensional approximation is a good one, this is not necessarily the case for BaFe2P2

which features a strongly three-dimensional hole band and some warping of the electron

bands. The lower panels present the same calculation performed at kz = 0 which shows
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Figure 4.6.2: Qualitative plots of the real and imaginary part of the Lindhard susceptibility
calculated at kz = π for T = 157 K and a range of δ and ω values.
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Figure 4.6.3: Real and imaginary part of the Lindhard susceptibility are plotted on the left and
right respectively. Upper panels are at kz = π and lower are at kz = 0. For these calculations
δ = 1× 10−3, ω = 1× 10−3 and T = 157.88 K. Insets show contour plots for the respective surface
plots.
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little change other than a rotation of the susceptibility bias due to the screw symmetry of

the electron bands.
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Figure 4.6.4: Left panel shows the imaginary part of the Lindhard susceptibility between bands
summed with their reciprocals for q = (π, π, kz) over the height of the BZ. We see enhancements
at kz = π/2, 3π/2 for bands 1-4 and 2-3 and at kz = 0, π, 2π for bands 2-3 and 2-4.

To verify that there is indeed a nesting conditions at some kz for q = (π, π, kz) fig-

ure 4.6.4 presents the imaginary part of the susceptibility vs. kz for a range of nesting

vectors. Each coupling of bands is summed both ways — e.g. 4-1 is summed with 1-4 —

and plotted in order to obtain the residual difference due to ω. Unsurprisingly, we see that

self coupling results in very little weight with hole-hole and electron-electron coupling also

resulting in little weight. The strongest component is due to bands 2-4 which also demon-

strates a strong enhancement of around 25% at kz = 0, π, 2π. Band 2 also couples strongly

with band three at the same q vectors with around a 17% enhancement. Band 1 couples

strongly with band 4 but at kz = π/2, 3π/2 with the largest enhancement of around 38%.

Band 1 also couples less strongly with band 3 at the same kz with an enhancement of

around 15%. The total susceptibility is determined mostly by the coupling of band 2 but

only has a relatively moderate enhancement of around 7.4% at kz = 0, π, 2π.

Figure 4.6.5 shows cross sections of the final corrected Fermi surfaces showing the

basal-plane at the bottom of the BZ (kz = 0), quarter of the way up, (kz = 0.25) and

halfway up (kz = 0.5). The inner hole surface (band 1) at kz = 0.5 directly matches

the size and shape of the inner electron surface (band 4) at kz = 0.25 which is the likely

cause of the strong enhancement observed in the susceptibility. Moreover, the bands share

similar predominant dxz+dyz orbital character. The strong enhancements between bands

2 and 4 are also shown in the figure as a dashed arrow.

These enhancements at q = (π, π) show that partial nesting does indeed occur in this

material demonstrating that this condition alone is not sufficient for superconductivity to

occur. This concludes the Fermiology results, we now move onto the mass enhancements.
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Figure 4.6.5: Cross sections of the corrected Fermi surface in the ab plane (panels 1, 2 and 3)
and in the [110] plane (panel 4). Markings correspond to the orbital character of the Fermi surface
slices. Two nesting vectors are shown as long arrows.

4.7 Determining the spin effective mass

Following the method in section 3.1.3, only a couple of portions of the data are suitable

for analysis in that they feature more than one identifiable zero in the oscillations due to

the spin term which are suitably strong and well separated from other data. These are a

maximal area of the α curve in the [100] direction and a maximal area of the β curve in

the [110] direction.

We begin by looking at the β data by using the cylindrical approximation and then

move onto using an expression for m∗b derived from a polynomial fit to band masses

calculated from DFT. Figure 4.7.1 shows the two fit forms for the band mass used — an

eighth order polynomial and the cylindrical approximation — used as well as in the inset

the particular portion of the α band data that was used in the following investigation. As

we can see from the inset, we use a relatively small portion of the measured data curve.

Detailed in the panels to the right of the figure are the parameters for the two equation

forms for the band mass. Beginning with the cylindrical approximation, figure 4.7.2 shows

Angle (deg.)

B
an

d
 M

as
s 

(m
e)

Angle (deg.)

Figure 4.7.1: Band masses calculated from DFT of band 4 taken over a range of angles rotating
towards the [100] direction. A fit to and order 8 polynomial is shows as well as a comparative fit
suing the cylindrical approximation.
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the FFT amplitudes for the said portion of the α electron pocket over a range of angles

towards the [100] direction as open circles. The shaded areas delimit where we believe

the amplitudes go to zero as determined by inspecting the overall shape of the curve and

the splitting of the peaks. The upper panel shows the n = 5 oscillation, with dotted

lines showing the bounds using the cylindrical approximation for the band mass. The

n = 5 oscillation most closely matches the zeros in the data with the n = 6 oscillation

which fits reasonably well presented in the middle panel. The lower panel shows the next

(n = 7) and previous oscillations (n = 4) in order to demonstrate that the AS curves

(given by eqn. 2.3.17), no longer align well with the data. We note that for negative

angles (i.e. where the sample was rotated back beyond B ‖ [001]) the amplitude is not

symmetric as expected. This has been observed previously for measurement using a similar

technique [77] and the cause has not yet been fully determined. Some possible explanations

could be changes in the resistance response of the cantilever as are transitions from flexing

upwards to flexing downwards however further investigation will be required to determine

this. Taking g = 2, the spin masses obtained using the cylindrical approximation from

the presented curves are 5.01± 0.05 m∗b for n = 5 and 6.07± 0.06 m∗b for n = 6. We now

contrast this with a spin mass determination using a band mass calculated from DFT.

Figure 4.7.3 shows the revised curves with the upper panel showing n = 4 to be the best

fitting with the lower panel demonstrating n = 3, 5 do not fit well to the measured data.

Now the fit values gives a spin mass of 4.02±0.06 m∗b . The second suitable portion of data

analysed is that of the maximal extrema of β where the field is rotated towards the [110]

direction. The DFT calculations do not follow exactly the shape of the measured data and

leads to a discontinuous jump in the band mass if we strictly follow the maximal orbits —

for this reason we elect to only use the cylindrical approximation since the portion shown

appear relatively two-dimensional. Figure 4.7.4 shows the reasonable fits for n = 4 and

n = 5 with the lowest panel showing the oscillations n = 3 and n = 6 are clearly not

aligned with the measured data. The oscillations n = 4 and n = 5 correspond to spin

masses of 3.46± 0.02 m∗b and 4.44± 0.03 m∗b respectively.

4.8 Determining the thermal effective mass

Basic LK formula fitting

A series of field sweeps were taken with H at 12◦, 28◦ and 46◦ from [001] in the [110]

direction. These were performed at a variety of temperatures from base (≈ 0.3 K) to above

2 K. Corrections were applied as detailed in section 3.1.2. Figure 4.8.1 shows the Fourier

amplitude of various peaks as a function of temperature along with fits to equation 2.3.13.

The field range for the FFT was was necessarily large enough that individual peaks did

not overlap and also could be observed across a reasonable range of temperatures but also
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Figure 4.7.2: AS curves calculated for various oscillations using the cylindrical approximation.
Open circles are FFT amplitudes for α band rotating towards the [100] direction.
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direction.
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small enough so that the B dependent Dingle factor did not play too large a role and so

an average B field can be assumed. The results from these fits are shown in table 4.7

along with the fit ranges. All FFTs in the plot were taken over an interval of 12-18 T with

the exception of the γ2 fit which was taken between 16-18 T so as to attain an appreciable

peak. The standard deviation was calculated by randomly varying the temperature values

by the estimated error (0.06 T) 1000 times and then taking the standard deviation of the

fitted m∗ values. Table 4.7 also shows gives a result, marked with a dagger, taken with a

Temperature (K)

F
F

T
 A

m
p

li
tu

d
e 

(a
. 

u
.)

α1 α2
α3

β1 β2 β3

δ1
γ1 γ2

Figure 4.8.1: Fits to the temperature dependent term of the LK formula, AT .

different field range. These fits give quite different values for the effective mass, indicating

that the average field approximation is not a valid one.

Retrofitting ansatz LK formulae

The measurements presented in the previous section were further refined using the ansatz

LK formulae as described in section 3.1.4. Figure 4.8.2 shows some sample fits used

to extract the Dingle terms used in the ansatz fit functions. Table 4.7 lists the extracted

Dingle terms for each peak of the Fermi surface and the subsequent results of the retrofitted

calculations for the effective masses. The various field limits were chosen in order to either

obtain a clearly delimited peak in the lower field cases or to obtain a signal from a weak
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Figure 4.8.2: Top left panel shows torque data for data taken at 12◦ towards the [110] direction
at 0.35 T with a polynomial background subtracted. Bottom right shows the FFT and the two
filter windows to produce the filtered torque plots in the top right and bottom left. Filtered plots
are fitted to extract the Dingle term for each frequency.

peak in the higher field cases.

‘Microfitting’ the LK formula

A second attempt at refining the LK fits was performed by applying the microfit technique

described in section 3.1.4 with 1.5 sinusoidal oscillations fit at a time. Filtering the data

beforehand is not always straightforward due to close proximity of neighbouring peaks.

The stronger peaks from the α and β Fermi surfaces show banding of the masses and a

clear trending of the results to one of a few values which have been highlighted in yellow.

Data in these regions were averaged to give the values in table 4.7.

All filtered using function Ffilt(x) = F(x)×1/2[tanh (π(x− xlow)/w)+tanh (−π(x− xhigh)/w)]

where F is the Fourier transform of the torque data, x is the dHvA frequency, xlow and

xhigh are the lower and upper limits of the filter range respectively and w determines the

trail off slope of the filter function. For all measurements w = 10.

4.9 Conclusions

The BaFe2P2 crystal and the subsequent angle dependent dHvA measurements are of

very good quality as evidenced by a number of traits including the presence of second

and third harmonics in the FFTs, the hole orbits showing up over a wide angular range,

the early onset of oscillations at 6 T and the observation of the Zeeman splitting of the

FFT peaks. The crystal appears to be a very clean single crystal although there is some

evidence of some misaligned domains, for example from some of the Bragg spots doubling
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up in the XRD and multiple peaks observed in the FFT at particular angles – see for

example α towards the [100] direction above ∼ 20◦ in figure 4.3.5. There are approximately

half a dozen separate peaks observed at this location which implies a similar amount of

misaligned domain orientations. This misalignment however does not appear to affect the

overall data which largely does not resolve the extra domains.

The Fermiology is largely solved by the angle plots with only a few minor ambiguities.

The F cos θ angle dependent plots clearly show approximately level curves for the two

hole Fermi surfaces demonstrating that α and β are approximately two-dimensional. The

hole surface, γ, deviates at high angles and δ is strongly three dimensional. Although we

cannot say for certain whether γ is pinched off or not, based on the rigidly shifted DFT

we expect that the minima to be small but not zero and was not observed due to low

frequency noise in the oscillations.

Previous dHvA measurements on BaFe2(As0.37P0.63)2 by Analytis et al. [22] shown in

figure 4.3.6 identified the branch of the dHvA angle data at around 500 T as the neck of the

2D hole pocket. In our own analysis, it made much more sense to attribute this curve to the

neck portion of the 3D hole band, with the neck of the 2D pocket being buried in the low

frequency noise. These two different statements are not necessarily incompatible. Since

the DFT data for the entire series suggests that whilst the 2D hole pocket retains the same

shape along the BaFe2(As1−xPx)2 series, the 3D hole pocket narrows considerably at the Γ

point and switches from being concentric with the 2D pocket at x = 1 to crossing through

the 2D pocket as x is reduced. However when the spin-orbit interaction is considered in

the DFT calculations, the crossing of the surfaces causes the bands to be redefined such

that the bands do not actually cross, in which case there would not be a Yamaji point as

specified in the Analytis paper since the similarly sized orbits at 50◦ angle are not from the

same band. An attempt was made to see if there was an enhancement of the oscillation

amplitude at the corresponding putative Yamaji point in the BaFe2P2 data but the close

proximity of the strong oscillations from the electron pockets made this intractable with

this particular data set.

Although the Fermi surface appears to nest at the q = (π, π, π/4) as shown in fig-

ure 4.6.5, the corresponding imaginary part of the susceptibility data shows stronger en-

hancements at the q = (π, π, π/2) vector, primarily due to the nesting between the 3D

hole Fermi surface and the inner electron surface. However the susceptibility calculations

do not take into account the orbital character of electrons at these nesting vectors. The

dominant character at q = (π, π, π/2) is between regions of dxz+dyz on the narrow portion

of the 3D surface and regions that switch between dxyand dxz+dyz on the electron surface.

This will suppress the scattering between the two due to considerations of angular mo-

mentum. Nonetheless the susceptibility shows there are significant enhancements of the

imaginary part of the susceptibility response between the electron and hole surfaces and

the partial nesting conditions required for spin fluctuations are satisfied. Given that that
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the system becomes more two dimensional as we approach the superconducting region,

this suggests that the nesting is enhanced and the fluctuations become stronger.

Like previous measurements of band structure by dHvA in the BaFe2(As1−xPx)2 mate-

rials, the Fermi surfaces are smaller than predicted by DFT calculations [20, 22]. Ortenzi

et al. [113] posits an explanation based on interband scattering which leads to shrinking of

the electron and hole pockets and an enhancement of the effective mass based on relaxing

an assumption on the chemical potential being far∗ from the electron/hole band edges.

Similar moderate effective mass enhancements to what we found in BaFe2P2 of around

1.4me were calculated — albeit modelled on a more two dimensional pnictide, LaFePO

— along with the fact that the theory predicts stronger shifts where interband coupling

occurs is supported by the BaFe2P2 data. The nested portions of the 3D δ hole band,

for example, is strongly shifted where it nests with the electron band but the bulge which

does not nest with anything is not shifted at all. Similar shifts between the measured data

and calculations were observed for the sister 122 compound SrFe2P2 [11] which is also a

partially nested material and yet shifts are notably absent for the non-nested 122 pnictide

compound CaFe2P2 [9] which matched the DFT calculations with no adjustments to the

energies.

It is not clear at this stage whether the shifting of the Fermi surface proportional

to the electron character for the 3D hole δ band performed in section 4.3.1 represents

anything physical or is simply a convenient and reproducible way to obtain the correct

band topology. Settling this question will require further investigation. However it is

interesting to note that the energy shifts for the 3D hole surface are proportional to

the dz2 and dxz+dyz characters, suggesting there may be a link between the kz scattering

component and energy enhancements. Recalling that we expect to see the strongest nesting

component between the 3D hole surface and the inner electron pocket, this also suggest

that the scattering between layers may play a part in suppressing superconductivity.

The wide bulge in the 3D hole surface ensures that several terms are needed for the

harmonic fits represented in section 4.5. For this reason, the harmonic fits simply represent

a convenient way to obtain the Fermi surface topology in the case of the 3D hole pocket.

∗‘Far’ in this case means greater than the scattering boson energy scale.



Chapter 5

Hall measurements on BSCO2201

Low (1.5 K) to high (300 K) temperature Hall measurements are presented on BSCO2201

over a wide doping range spanning the slightly underdoped to the far overdoped. The

Hall and resistivity data is modeled using the Ong construction to determine the relative

magnitudes of the scattering terms and is found to match the resistivity data within a

factor of 2.5 in the underdoped samples. In addition a novel doping assignment scheme

based on new Tl2201 dHvA results is trialled and was found to give slightly higher dopings

than the Ando method which compares room temperature Hall data to LSCO and the

Presland/Tallon method which scales normalised Tc values to a ‘universal’ parabola.

5.1 Sample growth

The samples were grown by Prof. Takeuchi’s group in Sendai University, Japan in May

2009 using the floating zone technique. Here powders of the correct stoichiometry are

compacted into a rod and fed slowly through a furnace. A region towards the centre of

the furnace heats the powders into a viscous melt, just below this region is a seed crystal.

As the end of the rod passes through the melt region, it meets the seed crystal below and

solidifies epitaxially onto it. The impurities are held in the melt portion of the crystal

by a thermodynamic energy gradient. The rod continues to be slowly passed through the

melt region, continually solidifying into the single crystal below until the entire rod has

passed through and the growth is over. The end portion, containing the impurities is

then removed. Samples from the same growth batch have previously been studied using

ARPES and STM by members of the Sendai group [74, 114–119].

Table 5.1 lists the nominal stoichiometries of the samples grown as well as the annealing

conditions. Also listed are the nominal Tc values for the source crystals which are used to

name the samples, the actual measured Tc values of individual samples for the purposes

of doping determination are slightly different due to different definitions of Tc
∗.

∗The source crystals were defined based on the zero value Tc, the Tc for doping purposes is defined
as the mid-point of the transition with an error based on the difference between the mid-point and the
zero-point.

101
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Table 5.1: Growth details for the BSCO2201 samples. OD, OP and UD stand for over, optimally
and under doped respectively. Tc values are nominal.

Nominal composition
Bi Pb Sr La Cu O Tc Reg. Annealing conditions

1.72 0.38 1.85 0.0 1.0 6+d <2 OD 400 ◦C, 96 h in 2.5 atm. O2

1.72 0.38 1.85 0.0 1.0 6+d 7 OD 750 ◦C, 24 h in air
1.72 0.38 1.85 0.0 1.0 6+d 16 OD 550 ◦C, 72 h in flowing N2

1.35 0.85 1.47 0.38 1.0 6+d 30 OD As grown
1.35 0.85 1.47 0.38 1.0 6+d 32 OP 650 ◦C, 72 h in flowing N2

1.2 0.90 1.30 0.55 1.0 6+d 30 UD As grown
1.2 0.90 1.30 0.55 1.0 6+d 28 UD 650 ◦C, 72 h in flowing N2

The samples are named according the convention,

B<Tc>K<UD/OP/OD><Crystal No.><Sample No.>

where UD/OP/OD stands for underdoped, optimally doped and overdoped respectively.

So for example ‘B00KOD2A’ refers to the sample ‘A’ taken from the crystal ‘B00KOD2’

— the second overdoped crystal with a nominal Tc of 0K.

5.2 Size determination

Thicknesses were determined for some of the samples using the FIB or the optical micro-

scope as described in the methods section. These measurements were performed with the

help of Dr. P. Heard. The thicknesses used to calculate absolute values of RH are listed

in table 5.2 and are marked in grey. FIB results are given for areas as close to the two

voltage contacts that were visible in the scans. As can be seen in the example scan shown

in figure 5.2.1, there is some variation in the depth along the sample length.

The two scans shown are of good quality, however for the purpose of estimating errors

in the thickness some of the scans presented problems. Samples B26KOD1A, B28KUD3A,

B30KOD2 and B30KUD3 were obscured with the grease applied as part of the pulsed field

measurements. Other samples were not correctly earthed such as B28KUD3B which made

the images dark, whilst samples B07KOD2 and B32KOP3 were very flaky under close

scrutiny. A scan of B30KOD3 showed that it was partially split in the ab plane which

may contribute to systematic error in thickness estimate. In all these cases, the estimate

in the thickness error was adjusted accordingly to compensate. A more comprehensive set

of FIB scans, including images of the split in the layers can be found in Appendix C.

The oblique view of B30KOD3 in figure 5.2.1 shows a clear misalignment of the voltage

legs to the right of the image. This illustrates why it is necessary to take both positive and

negative field sweeps in order to separate the magnetoresistance from the Hall components.
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51.3 μm

Figure 5.2.1: Top shows an image composited from several FIB scans along the length of sample
B00KOD1A, with bottom right showing a detail of the right voltage leg. Bottom left shows an
oblique top down view of sample B30KOD3.

This also explains why the length and width determinations were subject to large errors

which affects the absolute value of the in-plane resistivity calculations.

5.3 Temperature sweeps

Figure 5.3.1 shows the in-plane resistivity, ρ(T ) for each of the samples in zero field taken

in the VTI in the 16 T ‘Polo’ magnet. Samples were mounted as described in section 3.3.1

for measurement using the six probe technique. The typical contact resistances were of the

order of 1 Ω to 10 Ω. All measurements taken in the Polo magnet were taken by the author.

From this plot we can characterise the Tc of the samples and find the residual resistivity,

ρ0 as well as the linear and quadratic resistivity terms. This is done by using second order

polynomial fits to ρ = ρ0 + ρ1T + ρ2T
2 to the data above the transition temperatures

and extrapolate back to zero. Towards the overdoped side the resistivity is affected by a

second linear region which signifies the onset of the pseudogap and so a reduced region

is fitted which is marked in figure 5.3.2 which is found by examining the derivative of

the resistivity. Table 5.3 show the fit parameters for each of the samples. The residual

resistivities are very good with only one being above 100 µΩcm and most below 70 µΩcm

which has been cited as being exceptionally good for BSCO2201 [78]. Moreover the Tc

of the optimally doped sample is 36 K which is amongst the highest reported [78] which

again is testament to the crystal quality.

The mid-transition Tc values were extracted from the plots with the error determined
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Table 5.2: Sample measurements as determined by optical microscope measurements and thick-
ness as determined by FIB. Samples highlighted in grey were used for determining absolute values
of RH . A and B refer to each of the two contacts visible to the FIB scan.

Optical FIB
Sample Length (µm ) Width (µm ) Thick. (µm ) Contact A (µm ) Contact B (µm )

B00KOD1A 781± 123 157± 49 N/A 45± 1 50± 5
B00KOD1B 627± 49 196± 44 39± 5 43± 1.5 45± 1.5
B07KOD1 1277± 74 392± 49 29± 10 N/A N/A
B07KOD2 1061± 69 333± 74 N/A 20± 5 30± 1
B16KOD1A 795± 34 299± 34 N/A 24± 1 24± 1
B16KOD2A 358± 29 172± 54 9± 1 N/A N/A
B16KOD3 1122± 44 368± 83 N/A 25± 2 24± 2
B30KOD1 436± 34 250± 44 21± 2 N/A N/A
B30KOD2 344± 44 137± 29 20± 5 15± 4 15± 4
B30KOD3 255± 49 98± 25 N/A 16.5± 1.5 19± 1
B32KOP1 658± 83 397± 34 N/A 6.5± 1.5 6.5± 1.5
B32KOP2 441± 25 226± 20 10± 1 N/A N/A
B32KOP3 437± 34 118± 20 N/A 6± 1 6± 1
B32KOP4 427± 74 137± 39 N/A 9± 3 9± 3
B30KUD1A 622± 49 447± 25 36± 3 N/A N/A
B30KUD1B 828± 34 471± 64 35± 3 N/A N/A
B30KUD2 545± 69 152± 39 N/A 5± 1 5± 1
B30KUD3 476± 49 118± 34 N/A 7± 2 7± 2
B28KUD2A 657± 29 250± 39 11± 1 N/A N/A
B28KUD3A 633± 49 142± 34 N/A 16± 3 16± 3
B28KUD3B 653± 44 216± 49 N/A 16± 3 16± 3

Table 5.3: Fit parameters to ρ = ρ0 + ρ1T + ρ2T
2 for zero field resistivity data above Tc as well

as Tc values determined from the same plots. Fits are shown in figure 5.3.2.

Sample ρ0(mΩcm ) ρ1(mΩcm/K ) ρ2(mΩcm/K2 ) Tc (K ) Tc/Tc(max)

B00KOD1A 5.070×10−2 2.634×10−4 6.172×10−7 0± 1.0 0.00± 0.03
B07KOD2 9.042×10−2 7.433×10−4 8.733×10−7 11± 3.8 0.31± 0.11
B16KOD1A 6.012×10−2 6.775×10−4 5.092×10−7 17± 1.0 0.47± 0.03
B30KOD3 2.151×10−2 4.911×10−4 2.427×10−7 29± 0.5 0.81± 0.01
B32KOP1 6.602×10−2 5.483×10−4 1.401×10−6 36± 1.0 1.00± 0.03
B32KOP4 6.041×10−2 1.619×10−3 2.041×10−6 35± 2.0 0.97± 0.06
B30KUD3 1.234×10−1 2.128×10−3 1.085×10−6 32± 1.0 0.89± 0.03
B28KUD3A 2.379×10−2 7.237×10−4 5.979×10−7 32± 1.0 0.89± 0.03
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Figure 5.3.1: The in-plane resistivity measured in zero field. From nominally overdoped to
underdoped, samples are (a) B00KOD1A, (b) B07KOD2, (c) B16KOD1A, (d) B30KOD3, (e)
B32KOP1, (f) B32KOP4, (g) B30KUD3, (h) B28KUD3A. Right panel shows a zoomed portion of
the curves at the transition temperatures along with continuations of fits to portion of the curve
above Tc in red. Inset shows ρ(300 K) vs. doping (as determined by matching Rh with that of
Tl2201, see section 5.5) with errors due to size determination.
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from the difference between the mid point and the zero resistance point. Results are listed

in table 5.3 as well as the normalised Tc values, Tc/Tc(max), with Tc(max) = 36 K.

The inset to figure 5.3.1 shows the ρ(300 K) values for the samples along with vertical

error bars due to uncertainty in the length determination. As we saw in the previous

section, there is some misalignment of the voltage contacts which lead to systematic errors

in length.

5.4 Hall plots

The data presented here was taken by a various people at various facilities. For full details

see section 1.4.3. of The overarching six-probe measurement technique is used for all the

transport measurements with differences chiefly in measurement geometry and apparatus.

Figures 5.4.1, 5.4.2 and 5.4.3 show the Hall coefficients extracted as described in the

methods section for samples progressing from overdoped, optimally doped to underdoped

respectively. Where appropriate, the data is alongside that from Ando et al. [78] for

comparison. Red lines in the plots are guides to the eye.

For the samples of TC ≤ 28 K there are some data which did not reach sufficient

field to obtain linear behaviour which are circled with a dashed line in the plots. For

sample B30KOD2, many of the sweeps for T < 45 ◦C showed significant hysteresis due to

temperature drift. Despite temperature correction, many of the fits did not pass through

the origin (circled in the figure) which is a good indicator that the true field suppressed

linear Hall has not been obtained. The same goes for the circled points on the B30KUD2

plot and another data point at T = 1.5 K and RH = 7.3× 10−3 cm3 from the first trip

to LNCMI which is outside the plot boundary as well as data points on the plot for

B28KUD3B. The data sets are combined, minus the points highlighted in the previous

paragraph, in the main panels of figure 5.4.4 alongside the data from the Ando paper.

The error bars on the data points do not include error from the thicknesses which

are systematic across the data points. The inset of figure 5.4.4 shows the RH values at

300 K vs. doping for each of the samples with these error bars applied. The overall trend

in RH(300 K) is downward due to the fact that RH(300 K) values for Tl2201 also trend

downwards and the dopings were assigned by matching to this data — see section 5.5 for

details.

With reference to figure 5.4.4 and in particular the new low temperature data points,

we see that doping strongly affects the qualitative shape of the RH curves. The curves

have a temperature dependence which is stronger on the underdoped side which gradually

becomes less pronounced as doping increases, however all curves show a maximum in RH

at some point along the temperature axis. For the more underdoped samples the behaviour

below RH(max) appears linear in temperature, however the error bars preclude resolving if

there is a levelling off at 10 K to 20 K which Balakirev et al. found in strongly underdoped
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Figure 5.4.1: RH for underdoped samples of BSCO2201. Plots show results from, • Polo in June
2010, N LNCMI in June 2009, H LNCMI in Feb 2010, � Nijmegen in May 2010. Symbols for
comparable samples are marked on the plots. Red lines are a guide to the eye.
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Figure 5.4.2: RH for underdoped samples of BSCO2201. Plots show results from, • Polo in June
2010, N LNCMI in June 2009, H LNCMI in Feb 2010, � Nijmegen in May 2010. Symbols for
comparable samples are marked on the plots. Dashed lines indicate points where the field was not
sufficient to achieve linear behaviour. Red lines are a guide to the eye.
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Figure 5.4.3: RH for underdoped samples of BSCO2201. Plots show results from, • Polo in June
2010, N LNCMI in June 2009, H LNCMI in Feb 2010, � Nijmegen in May 2010. Symbols for
comparable samples are marked on the plots. Dashed lines indicate points where the field was not
sufficient to achieve linear behaviour. Red lines are a guide to the eye.
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Figure 5.4.4: Hall data in context with data from Ando et al. [78] (open circles) which are
in order of increasing RH , 24KOD, 30KOD, 33KOP, 28.5KUD, 20KUD. Right panel shows the
inverse hall data which relates to carrier density. Red lines are the same guides to the eye used in
previous figures. Inset shows RH at 300 K plus systematic error bars due primarily to uncertainty
in thickness vs. doping determined from scaling RH(300 K to Tl2201 data.
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BSCO2201 samples [79]. The low temperature RH values all tend towards approximately

similar values of around 0.5× 10−3 cm3/C to 1.5× 10−3 cm3/C. The most pronounced

difference between high and low temperature values though is with the optimally doped

samples which are around ×2.75 greater at high temperature. None of the curves exhibit

a change in sign right down to 0 K.

Doping p

R
at

io
 t

o
 R
H
(3
0
0
K
)

RH(0K)/RH(300K)

RH(max)/RH(300K)

Doping p
T

em
p

er
at

u
re

 (
K

) TRH(max)

Figure 5.4.5: Left shows ratio of RH values at the maximum of the Hall curves and at T = 0 K
to the T = 300 K RH values. Errors in RH(0 K estimated from Hall plots, the value for B30KUD2
is estimated based on linear extrapolation. Right shows the temperature where the maximum RH

occurs.

Figure 5.4.5 shows the ratio of theRH(0 K)/RH(300 K) values andRH(max K)/RH(300 K)

values where RH(max) is where the curve reaches its maximum value. We can see rela-

tively little change in RH(max)/RH(300 K) across the dopings, however the low temper-

ature value drops off significantly at around p = 0.25 and for the purpose of comparison

with literature this corresponds to p = 0.19 as determined by the Presland/Tallon rela-

tion. This coincides to a multitude of phenomena which are thought to be associated with

the pseudogap [61]. Since we observe this in the normal state below the superconducting

dome, this suggests that the drop is also associated with the pseudogap and that the third

scenario described in 1.3.4 where the pseudogap merges with the superconducting gap at

the top of the superconducting dome is not the correct one.

5.4.1 Anisotropic model based on the Ong construction

To try and understand the Hall behaviour and whether this could be a result of an

anisotropic scattering term in the overall scattering rate we attempt to model the data

based on the Ong construction [105] which was detailed in section 2.6.1. We use Fermi

surface data obtained by our collaborators by ARPES on crystals taken from the same

batch [80]. Where data for a particular doping was not available, an interpolation was

used between two known dopings. We assume a 2D Fermi surface and that the orthorhom-

bicity is slight enough that we can approximate fourfold symmetry and overlay four point

Bezier curves as shown in figure 5.4.6 in order to obtain a well behaved analytic function

representing the Fermi surface shape. These were checked against data points extracted
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from the plots in the code and the symmetrised Fermi surface was checked against the

original Fermi surface presented in the Kondo paper.

Figure 5.4.6: Fermi surfaces from the Kondo paper [80] with Bezier curves overlaid spanning
1/8th of the circumference of the Fermi surface

We then supposed a three term scattering rate as Γ = Γ0 + Γ1 cos2(2φ)T + Γ2T
2 which

includes the anisotropic scattering rate proposed by Abdel-Jawad et al. [120] and discussed

in section 1.3.6. RH calculated in this way is invariant to scaling of the overall magnitude

of Γ since the longitudinal conductivity terms cancel the transverse conductivity term.

Because of this, we only fit the relative magnitudes of Γ0, Γ1 and Γ2. Keeping the Γ2

term constant and adjusting the anisotropic scattering term, Γ1, for the Fermi surfaces

examined results in an overall scaling of the temperature dependent RH curve as shown in

the right panel of figure 5.4.7. Keeping Γ2 constant and increasing Γ0 results in RH(max)

occurring at higher temperatures as well as a decrease in RH . By first tuning Γ0 to obtain

the correct temperature at which RH(max) occurs, then tuning Γ1 to obtain the correct

RH(0 K)/RH(max) ratio the best match to the curves was determined.

Figure 5.4.8 shows the resulting RH curves. The resulting parameters are shown

in table 5.4 and are expressed as terms of a fit to a longitudinal resistivity curve, i.e.

ρRH = ρRH
0 +ρRH

1 cos2(2φ)T 2+ρRH
2 T 2. ρRH (T ) is normalised to match the actual resistivity

curves at T = 300 K given in table 5.3. Since the cos2 anisotropic term is averaged over

the Fermi surface to obtain resistivity∗, this introduces a factor of 1/2 in the ρ1 fitted

resistivity term. The ρRH
1 term is therefore halved to compare with the value from the

anisotropic model. Ratios of the values of the two fitting methods are also shown in

table 5.4.

In general the resulting ratios only match up very approximately, to within an order

of magnitude, however the T -linear term from the anisotropic model matches the corre-

sponding term from the resistivity reasonably well, ranging between 0.6 and 1.5 times the

resistivity values. We see some systematic behaviour with the residual resistivity value,

∗See the conductivity equation in section 2.6.1.
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Figure 5.4.7: Left panel shows how the temperature dependence of RH changes when the Γ0

scattering term is adjusted. Curves are normalised to their maximum value. Right panel shows
the scaling of RH resulting from the adjustment of the anisotropic Γ1 term. Both sets of data were
taken using the Fermi surface for UD27K.

Table 5.4: The scattering terms obtained by the anisotropic model and their ratios compared to
the resistivity fits. The anisotropic model terms are normalised to match the T = 300 K value for
the resistivity data.

Sample ρRH
0 ×10−3 ρRH

1 ×10−4 ρRH
2 ×10−7 ρRH

0 /ρ0 ρRH
1 /ρ1 ρRH

2 /ρ2

B00KOD1a 7.50± 0.9 3.67± 1.1 16.31± 2.8 0.1 0.7 2.6
B16KOD1a 11.92± 2.6 7.75± 4.1 29.79± 7.4 0.2 0.6 5.9
B07KOD2 12.91± 2.8 8.92± 4.9 37.16± 9.5 0.1 0.6 4.3
B30KOD2 10.31± 1.2 6.75± 1.5 13.84± 1.6 0.5 0.7 5.7
B30KUD3 19.72± 15.3 43.62± 1.6 18.88± 14.8 0.2 1.0 1.7
B32KOP4 12.62± 5.1 37.79± 2.4 7.70± 3.2 0.2 1.2 0.4
B32KOP1 5.41± 2.2 16.20± 9.5 3.30± 1.4 0.1 1.5 0.2
B28KUD3 9.60± 3.8 15.09± 9.0 5.52± 2.2 0.4 1.0 0.9
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Figure 5.4.8: Hall data with data generated from the Ong construction overlaid in red. Bounds
to account for the uncertainty in the RH(0 K) values are shown. Bounds for the uncertainty in the
temperature of the maximum of RH are not shown since they vary very little.
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ρRH
0 being consistently undervalued by a factor of 2 to 10. For the overdoped samples the

T 2 factor is around 2.6 to 5.9 times higher than expected and for the underdoped samples

is up to a factor of 5 lower than the resistivity fits show which suggests that perhaps there

is a doping dependence to the T 2 term. We also observe an increase the linear in T term

with doping and Tc similar to that found by Abdel-Jawed et al. [120]. The ρRH
1 values are

plotted in figure 5.4.9. This is encouraging and supports the notion that it may be possible

to model the Hall data in the cuprates, in particular the downturn in the Hall coefficient

at low temperatures, without requiring the sort of Fermi surface reconstructions proposed

by LeBoeuf et al. [63] detailed in section 1.3.5. It should be emphasised however that the

data does not preclude the type of scenario described by LeBoeuf et al..
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Figure 5.4.9: Linear in T terms determined from the anisotropic model fits plotted against Tc
similar to Abdel-Jawed et al. [120]

It may be the case that refinements to the model will result in better agreement between

the data and modeling vF in the scattering rate will have significant effect close to the

van-Hove singularity in the overdoped side. A prima-facie analysis suggests that it will

enhance the anisotropy and therefore suppress the anisotropic linear in T term towards

the overdoped side. Nonetheless a detailed investigation is required to see if this really is

the case.

5.5 Doping determination

As described in section 1.4.2, we compared the Hall values of our samples at high tem-

perature to determine the doping similar to the method used by Ando et al. [76]. In

order to compare this method with other doping characterisation methods, the actual (i.e.

not nominal) Tc values for the samples were used from the resistivity curves shown in

figure 5.3.1. These values were input into the parabolic relation from Presland et al. [75]

and Ando et al. [76]. This is then compared with the doping assignments which we make

by matching RH(300 K) in the BSCO2201 data from the previous section with that com-
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piled in Kokalj et al. [121] on Tl2201. The results of these comparisons are shown in

figure 5.5.1. The Tl2201 data does not span the entire range of RH(300 K) values that
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Figure 5.5.1: Assigning the dopings of the BSCO2201 data such that RH(300 K) values match
those of Tl2201. Dashed line is a second order polynomial fit to the Tl2201 data that is used to
obatin the exact dopings.

the BSCO2201 covers, for this reason a second order polynomial is fit to the Kokalj data

and the BSCO2201 doping is assigned to this curve. The underdoped sample B28KUD3a

is far along the extrapolated curve, however still lies within the standard Presland/Tallon

assignment as used to determine the dopings for the Konstantanovic data [122].

Figure 5.5.2 shows the dopings as determined by the three different methods outlined

in the experimental methods chapter. The dopings of the crystals range from p = 0.12

to p = 0.36 hole per Cu atom with significant discrepancies between the methods. The

Ando determination bunches the doping values around a much narrower range, whereas

the dopings determined by comparing with the Tl2201 dHvA data, spread the overdoped

values over a wider range. The Presland/Tallon method sits between the two. Most

notable is that the dopings assigned by Kondo et al. [80] from ARPES measurements of

the Fermi surface volume taken at 200 K. These are for different samples from the same

growth batch but show significantly higher still span of dopings between p = 0.25 and

p = 0.43. It is not clear why there is a discrepancy given that both determinations are

based measure of the Fermi surface in the normal state (the dHvA being field induced at

low temperature and ARPES being above Tc), however we believe that the ARPES data

may be subject to some kind of surface charge effect since it shows that the overdoped

0 K sample has passed the van-Hove singularity when our Hall data (obtained from the

sample bulk) does not show any evidence for this.
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Figure 5.5.2: Doping distributions for the three different methods. From left to right,
B28KUD3A, B30KUD3 (Assume UD), B32KOP1, B32KOP4, B30KUD3 (Assume OD), B30KOD3,
B16KOD1A, B07KOD2, B00KOD1A. Broken lines are a guide to the eye. Circled points are
B30KUD3 for both the overdoped and underdoped scenarios.

5.6 Conclusions

High quality crystals of Pb and Sr doped BSCO2201 were sourced and studied in the

normal state by high-field magnetotransport measurements down to low temperatures,

thereby determining the low temperature Hall behaviour. The samples exhibited a sharp

change in the RH(0 K)/RH(300 K) which coincides with various phenomena related to

the pseudogap. This occurs in the field induced normal state which suggests that the

scenario described in section 1.3.4 where the pseudogap disappears at the top of the

superconducting dome is not the correct one.

The data was modelled using a simple anisotropic model based on the Ong construc-

tion and was found to fit the relative scattering rates in the reasonably well it although

consistently underestimated the residual resistivity term and for the overdoped samples

overestimated the T 2 term. An increase in the T -linear term was observed to scale with

doping similar to as found by Abdel-Jawad et al. [120]. This relatively crude model sug-

gests that with further refinement it could be used to explain the physics at underdoped

side of the phase diagram without resorting to complex Fermi surface reconstruction sce-

narios proposed by LeBoeuf et al.The first port of call for the refinement would be the

inclusion of the Fermi velocity in the scattering rate which may also improve the agreement

in the overdoped side.

A novel doping determination technique is presented based on the method outlined by

Ando et al. by matching the high temperature Hall data of the BSCO2201 samples to

Hall data of samples of overdoped Tl2201 of known doping. The method assigns doping

values that fall between the ‘universal’ method of Presland/Tallon and those found from
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ARPES measurements by Kondo et al.

A natural continuation of this work would include a more precise determination of the

low field region to determine with more certainty if the low temperature behaviour is truly

T -linear or it plateaus at very low temperatures as found by Balkirev et al. in underdoped

samples [79] and then attempt to model it using the Ong construction.
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Chapter 6

Conclusions

In chapter 4 dHvA measurements were presented on high quality samples of BaFe2P2.

Energy dispersions from DFT calculations were tweaked to match the measured Fermi

surface orbits by rigidly shifting both the inner and outer electron energy bands and

the inner hole band by 0.0050 Ry, 0.0043 Ry and -0.0083 Ry respectively. The hourglass

shaped outer hole band energy required no shift at the wide part and a shift of -0.0038 Ry

at the narrow part which was found to be nested with the inner electron band. To achieve

a smooth transition between the two energy shift regimes, the dispersion was tweaked

proportionally to the dz2 band character and a complete Fermi surface was determined.

Similar energy shifts were necessary to correct DFT data for the closely related compound

SrFe2P2 which is similarly nested but no shifts were necessary for the DFT dispersions

modelling CaFe2P2 which is not nested. The fact that electron-electron correlations are

only accounted for in DFT calculations on a mean-field level and that the discrepancies

occur at areas which show nesting suggests that these shortcomings in the DFT data

are due to spin fluctuations arising from the nesting condition renormalising the band

structure. To further investigate this the bare Lindhard susceptibility was computed and

the nesting condition was clearly shown along the q = (π, π) vector between hole and

electron bands despite the fact that no superconductivity is present in BaFe2P2. The

conclusion is that partial nesting is not alone a sufficient condition for superconductivity.

The thermal effective masses were determined on the electron and, for the first time,

hole orbits and the spin effective masses on the electron orbits. The masses showed a

moderate renormalisation (between 0.88mb and 3.04mb) on both hole and electron bands

in line with previous literature [20]. Also presented in chapter 4 is an analytical fit to

the Fermi surface similar to that in Bergemann et al. [112] for future use in theoretical

models. It also includes a mapping of the progression of key orbit area sizes of the Fermi

surface determined across the BaFe2(As1−xPx)2 series using Vegard’s law in order to aid

the correction of DFT calculations.

The next step in this line of research would be to continue performing dHvA measure-

ments on other members of the BaFe2(As1−xPx)2 series in order to determine the topology

and scale of the missing hole pockets, especially around the superconducting dome. This

would provide further insight into whether nesting really is a crucial component of the

exotic superconudctivity and also shed some light on the validity of DFT calculations.

In chapter 5 Hall measurements taken in high field from 1.4 K to 300 K on good

quality samples of BSCO2201 were presented. A sharp change in RH(0 K)/RH(300 K) was

119
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observed at p = 0.19 which coincides with other phenomena which indicate the presence of

the pseudogap [61]. Since this occurs inside of the superconducting dome this is evidence

in support of the scenario where the pseudogap drops inside of the superconducting dome.

A simple anisotropic scattering model based on the Ong construction [105] was fitted

to the Hall data and the resulting scattering terms, Γ = Γ0 + Γ1 cos(2φ)2T + Γ2T
2 were

used to calculate the longitudinal resistivity and normalised to the 300 K values of the

fitted resistivity curves. In general the comparison between the fitted resistivity curve

coefficients and the coefficients obtained from the anisotropic model agreed within at least

an order of magnitude with the linear in T term matching to within a factor of 0.6 to 1.5.

The residual ρRH
0 term obtained from the model is consistently undervalued by a factor of

around 2 to 10. The T 2 term from the anisotropic model is overvalued by up to a factor of

5.9 on the overdoped side to being undervalued by a factor of 5 on the underdoped side.

This is likely due to the relative proximity to the van-Hove singularity and the fact that the

model did not include a vF term in the scattering rate. The results provide a good starting

point for further refinement and possible full agreement between temperature dependent

Hall and resistivity data in the cuprates without resorting to complicated Fermi surface

reconstruction models such as that proposed by LeBoeuf et al. [63].

Finally, presented in chapter 5 is a novel doping determination technique based on a

method of matching high temperature Hall coefficient to Tl2201 as a reference material.

The resulting dopings are greater than those from the ‘universal’ Presland/Tallon rela-

tion [75] and less than those assigned to similar samples measured with ARPES [80]. The

overall spread in dopings for these samples from this new method was determined to be

between p = 0.12 and p = 0.36.

Further refinements on the anisotropic scattering model is required to provide solid

evidence that the model is an appropriate explanation of the temperature dependence of

the low temperature Hall behaviour. In particular the effects of the Fermi velocity on the

model close to the van-Hove singularity can be included relatively easily and would show

whether this is the cause of the disparity of the model at higher temperatures. More-

over, a more precise determination of the low temperature Hall behaviour in BSCO2201

would better constrain the model as well as resolve any ambiguities as to whether the low

temperature behaviour is, for example, linear in temperature.
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Appendix A

‘Microfit’ parameters

Fit parameters for the ‘microfitting’ technique described in section 3.1.4. Note: at 46◦ the

peak is twinned.

Angle (deg.) Band Frequency (T ) Fit Periods Filter Range

12 α1 1210 1.5 1100–1240

28 α1 1269 1.5 1200–1310

46 α1 1532 1.5 1430–1585

12 α2 1372 1.5 1320–1440

28 α2 1530 1.5 1450–1650

46 α2 2017 1.5 1970–2100

28 β2 1365 1.5 1320–1440

12 β1 2180 1.5 2100–2270

12 β2 2500 1.5 2450–2550

28 β2 2605 1.5 2555–2670

46 β2 3347 1.5 3250–3370

46 β2 3381 1.5 3365–2500

12 β3 2350 1.5 2270–2450

28 β3 2475 1.5 2400–2560

46 β3 2970 1.5 2850–3100

12 δ 1270 1.5 1250–1310

46 δ 1626 1.5 1590–1690

28 γ1 912 1.5 850–970

46 γ1 1320 1.5 1270–1370

46 γ2 4497 1.5 4400–4600
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Appendix B

Lindhard susceptibility calculation

code

The following is MATLAB code known to run on release 2008b.

1 function [total_re_x0 total_im_x0] = calc_x0(fs , T, delta , omega , ...

2 q_space , energy_ind_combs , out_filestem)

3

4 % A function to calculate the non -interacting susceptibility according to

5 % the Lindhard function. Matrix elements are assumed to be unity.

6 %

7 % energy_ind_combs: Optional Nx2 matrix of band pairs (default: empty ,

8 % All band pairs are calculated)

9 % temperature: Temperature (default: Absolute zero - slightly

10 % quicker to calculate)

11 % delta: Quasiparticle lifetime , if zero this will give

12 % zero for the imaginary portion of the

13 % susceptibility (default: zero)

14 % omega: Perturbation frequency (default: zero)

15 % out_filestem: Filestem for all the individual band combinations

16 % Default: ’x0 ’

17 % q_space: Indices of Q space to calculate passed as a cell array

18 % of 3 vectors , first for the Qx indices , second

19 % for the Qy indices , third for the Qz indices. An

20 % empty cell array or an empty vector in the

21 % cell array defaults to the full extent of

22 % grid of energy points. N.B. Since we are

23 % dealing with indices , not k-space values , 1

24 % corresponds to a zero in q-space (i.e.

25 % qx = (n-1)* dk_x where n is the number passed)

26 %

27 % RETURNS:

28 % re_x0: Real values of x0

29 % im_x0: Im values of x0

30 %

31

32

33 % Use to test the code. Generates free electron energy dispersion and

34 % calculates a susceptibility. Actually not straightforward since free

35 % electron dispersion is not periodic.

36 TEST_FREE_ELECTRON = false;

37 DIMENSIONS = 3;

38

129
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39

40 if TEST_FREE_ELECTRON

41 clear fs;

42 free_electron_dispersion = @(kx , ky , kz) (kx.^2 + ky.^2 + kz .^2);

43 delta = 1e-9;

44 omega = 1e-9;

45 MAX_L = 1;

46 MIN_L = -1;

47 NUM_PTS = 100;

48 fs.dL = (MAX_L - MIN_L) / (NUM_PTS - 1);

49 fs.FermiLevel = 0.09;

50 L = linspace(MIN_L , MAX_L , NUM_PTS );

51 if DIMENSIONS == 3

52 [fs.cartX , fs.cartY , fs.cartZ] = meshgrid(L, L, L);

53 q_space = {[], [], []};

54 % Calulate distance each grid point is from centre in order

55 % to build the symmetry mask

56 [x y z] = meshgrid (1: NUM_PTS , 1:NUM_PTS , 1: NUM_PTS );

57 r = hypot(hypot(x - NUM_PTS ./ 2, y - NUM_PTS ./ 2), ...

58 z - NUM_PTS ./ 2);

59 elseif DIMENSIONS == 2

60 [fs.cartX , fs.cartY , fs.cartZ] = meshgrid(L, L, 0);

61 q_space = {[], [], 1};

62 [x y] = meshgrid (1: NUM_PTS , 1: NUM_PTS );

63 r = hypot(x - NUM_PTS ./ 2, y - NUM_PTS ./ 2);

64 else

65 error(’Number of dimensions not supported ’);

66 end

67 % Symmetry mask based on Fermi function , ensures that the

68 % symmetry is spherical for the non -repeating free -electron case

69 MASK_TRIM = 1.5;

70 MASK_DECAY = 10;

71 sym_mask = 1 ./ (exp((r - (NUM_PTS ./ 2 - MASK_TRIM )) ...

72 * MASK_DECAY) + 1);

73 fs.cartE = {};

74 fs.cartE {1} = free_electron_dispersion(fs.cartX , fs.cartY , ...

75 fs.cartZ);

76 end

77

78

79 % Set the temperature

80 if isempty(T)

81 T = 0;

82 end

83 disp(sprintf(’Temperature set to: %.3f’, T));

84

85 % Set the lifetime

86 if isempty(delta)

87 delta = 0;

88 end
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89 disp(sprintf(’Quasiparticle lifetime set to: %.3f’, delta ));

90

91 % Set omega

92 if isempty(omega)

93 omega = 0;

94 end

95 disp(sprintf(’Plasma frequency set to: %.3f’, omega ));

96

97 % Set the output filestem

98 if isempty(out_filestem)

99 out_filestem = ’x0’;

100 end

101 disp([’Filestem set to: ’ out_filestem ]);

102

103 % Set the size of the Q region to be calculated

104 [num_qx num_qy num_qz] = size(fs.cartE {1});

105 if isempty(q_space)

106 q_space = {[] [] []};

107 end

108 if isempty(q_space {1})

109 qx_range = 1: num_qx;

110 else

111 qx_range = q_space {1};

112 end

113 if isempty(q_space {2})

114 qy_range = 1: num_qy;

115 else

116 qy_range = q_space {2};

117 end

118 if isempty(q_space {3})

119 qz_range = 1: num_qz;

120 else

121 qz_range = q_space {3};

122 end

123 disp(sprintf(’Size of q space is: %dx%dx%d’, num_qx , num_qy , num_qz ));

124

125 % Set the combinations of bands to be calculated

126 % Replace if necessary

127 if isempty(energy_ind_combs)

128 % Compile a list of combinations of the bands in terms of indices

129 n = length(fs.cartE);

130 energy_ind_combs = zeros([n 2]);

131 i = 0;

132 for ind1 = 1:n

133 for ind2 = 1:n

134 i = i + 1;

135 energy_ind_combs(i,1) = ind1;

136 energy_ind_combs(i,2) = ind2;

137 end

138 end
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139 end

140 disp(’Band combinations to be calculated and summed over:’);

141 disp(energy_ind_combs );

142

143

144 %K_BOLTZ = 1.3806503e-23;

145 K_BOLTZ = 6.3336e-6; % In Rydbergs

146

147 total_im_x0 = zeros(num_qx , num_qy , num_qz );

148 total_re_x0 = zeros(num_qx , num_qy , num_qz );

149

150 % This will be ’Inf ’ if T=0 but will not be used later if thisis

151 % the case

152 beta = 1 ./ (K_BOLTZ .* T);

153

154 for inds = energy_ind_combs ’

155 % Assign the two coupled bands to be calculated

156 energies = fs.cartE{inds (1)};

157 q_energies = fs.cartE{inds (2)};

158 % Initialise the results matrices

159 im_x0 = zeros(num_qx , num_qy , num_qz );

160 re_x0 = zeros(num_qx , num_qy , num_qz );

161 % Iterate over all Q vectors

162 for k = qz_range

163 for j = qy_range

164 disp(sprintf(’Bands %d->%d: k=%d\tj=%d’, inds ’, k, j));

165 for i = qx_range

166 % Determine the energies at k+Q

167 if TEST_FREE_ELECTRON

168 qx = (i - 1) .* fs.dL;

169 qy = (j - 1) .* fs.dL;

170 qz = (k - 1) .* fs.dL;

171 energies_prime = free_electron_dispersion(fs.cartX ...

172 + qx , fs.cartY + qy , fs.cartZ + qz);

173 else

174 energies_prime = circshift(q_energies , [i - 1, ...

175 j - 1, k - 1]);

176 end

177 % x0 (non -interacting susceptibility) is of form

178 % A / (B + iC)

179 % Re(x0) is of form AB / (B^2 + C^2)

180 % Im(x0) is of form -CA / (B^2 + C^2)

181

182 % Quicker approximation for T=0 that also avoids Inf in

183 % calculation

184 if T == 0

185 A = (energies <= fs.FermiLevel) - (energies_prime ...

186 <= fs.FermiLevel );

187 else

188 A = 1 ./ ( exp(beta .* (energies - fs.FermiLevel )) ...
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189 + 1 ) - 1 ./ ( exp(beta .* (energies_prime - ...

190 fs.FermiLevel )) + 1 );

191 end

192

193 B = energies_prime - energies - omega;

194 C = delta; % Is -delta in formula , but this is cancelled

195 % by a negative when finally calculating Im(x0)

196

197 D = A ./ (B.^2 + C.^2);

198

199 im_result = C .* D;

200 re_result = B .* D;

201

202 % Remove NaNs (usu. from 0/0 operations)

203 im_result(isnan(im_result )) = 0;

204 re_result(isnan(re_result )) = 0;

205

206 if TEST_FREE_ELECTRON

207 im_result = im_result .* sym_mask;

208 re_result = re_result .* sym_mask;

209 end

210

211 im_x0(i, j, k) = sum(im_result (:));

212 re_x0(i, j, k) = sum(re_result (:));

213 end

214 end

215 end

216 % Save this band pair data individually before combining with overall

217 % x0

218 save(sprintf ([ out_filestem ’_Bands =%d-%d’], inds), ’re_x0’, ’im_x0’);

219 total_im_x0 = total_im_x0 + im_x0;

220 total_re_x0 = total_re_x0 + re_x0;

221 end

222

223 end



134 APPENDIX B. LINDHARD SUSCEPTIBILITY CALCULATION CODE



Appendix C

FIB scans

Exemplary images from the FIB scans performed with the help of Dr. P. Heard.

B00KOD1a

B07KOD2

B16KOD1a

B30KOD3

Figure C.0.1
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B30KOD2

B32KOP1

B32KOP3

B32KOP4

B28KUD3a

B28KUD3b

Figure C.0.2


