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Abstract

These quick refresher notes will probably only be useful for those
with a univsersity level maths. They were written primarily for my
own benefit and so may appear sketchy. They are loosly based on
Jordan & Smith and Boas textbooks.

1 Definitions

1.1 Independant / Dependant Variables

With dy
dx , x is the independant variable as it can take any value, whereas y

(a function of x,) is dependant on x and so is the dependant variable.

1.2 Differential Equation Definition

A differential equation is an equation that contains at least one differential
(a function differentiated i.e. dy

dx or d2ψ
dt2

). A solution is a function which,
when substituted for the dependant variable give an identity (a relationship
that is true for all values of the independant variable(s)).

1.3 Linear Differential Equations

Equations that take the form . . .

dny

dxn
+ . . . + g(x)

d2y

dx2
+ h(x)

dy

dx
+ i(x)y = f(x)

are linear equations. The order of the linear equations is the order of
the highest differential.
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1.4 Forcing term

In the above linear equation f(x) is the forcing term. This represents the
input of the system wheras the solution represents the output. When this
is zero the equation is said to be unforced or homogenous.

1.5 Boundary Conditions

There are often many solutions to a given equation. However they can all
be obtained from the general solution which features n arbitrary constants
where n is the order of the equation. To go from this to a specific or
particular solutions, we often specify boundary conditions. i.e. At x =
0, y = 0. In general, we need as many conditions as there are arbitrary
constants to get a particular solution.

2 Solutions to Unforced Linear Equations with Con-
stant Coefficients

2.1 First Order

dy

dx
+ cy = 0 Solution:y = Ae−ct

c is a constant and A is an arbitrary constant.

2.2 Second Order

d2x

dt2
+ b

dx

dt
+ cx = 0

Try solns. of the form x(t) = emt then sub in the above to get . . .

m2emt + bmemt + cemt = emt(m2 + bm + c) = 0

Solve the above quadratic (known as characteristic equation,) to get m1

and m2. This gives . . .

x(t) = em1t and x(t) = em2t

This is know as the basis. By superposition theorem give family of solns.

x(t) = Aem1t + Bem2t

Note: each 2dn order eqn. has two linearly independant solns.
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2.2.1 If characterstic eqn. only has one soln.

If characteristic eqn end up like (m + 2)2 then other soln. is of form . . .

temtso general soln. is . . . Aemt + Btemt

2.2.2 If characteristic eqn. has complex solns.

Work out as normal . . .

x(t) = Ae(α+iβ)t + Be(α−iβ)t

but can be simplified. i.e.

e(α+iβ)t = eαteiβt = eαt cos βt + ieαt sinβt

(by de Moivre). The Real and Imaginary part of the above give a new
basis in their own right. The above can be simplified further . . .

x(t) = eαt cos βt + eαt sinβt = Ceαt cos(βt + φ)

C and φ are arbitrary consts. (Think conversion between cartesian and
polar co-ordinates).

3 Solutions to Forced Linear Eqns.

The following obtain particular solutions. Particular solutions. are used to
obtain general solutions. (explained later).

3.1 Particular solns.

Forcing term is f(t). Finding particular solns. is case of trying an appro-
priate solution and adjusting parameters until it fits.

3.1.1 First and second order constant coefficient linear equations

As a general rule the following suggestions will work,

Forcing term (f(t)) Solution to try (x(t))
Keαt peαt

K cos βt or K sin βt p cos βt + q sinβt
Polynomial order N Complete polynomial order N
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If f(t) is a sum of the above, then due to the superposition principle we
can calculate particular solutions for each seperately then simply sum the
solutions.

Sometimes the above suggestion give trivial (null) solutions. The follow-
ing are some exceptional cases and their solutions.

Equation Solution to try (x(t))
d2x
dt2

+ β2x = a cos βt a
2β t sinβt

d2x
dt2

+ β2x = a sinβt − a
2β t cos βt

3.1.2 Using de Moivre

When the forcing term is of form aeαt sinβt or aeαt cos βt solve using forc-
ing term ae(α+iβ) then take the real or imaginary part of the solution as
appropriate.

3.2 General solutions

By clever jiggery-pokery, we obtain general solutions by summing an arbi-
trary particular solution of the forced equation with the general solution of
the equivelant unforced equation, (i.e. where we substitute f(x) for 0).

4 Linear Equations with non-constant coefficients

4.1 First order

Equations of form,

dx

dt
+ g(t)x = f(t)

Then solution can be got from,

xeI =
∫

f(t)eI + c where I =
∫

g(x)dx

Note: This works for constant coefficients as well.

4.2 Equations with lower order terms missing

An example,

g(x)
d2x

dt2
+ h(t)

dx

dt
= f(t)
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There is no term i(t)x. Substitute in a new temporary dependant vari-
able (say, p), such that p = dx

dt and dp
dt = d2x

dt2
thus converting it into a first

order equation. Solve using the above then replace p with dx
dt when you have

the solution.

4.3 First order seperable

Equations of form,

dx

dt
= g(x)h(t)

rearrange into the following form,

dx

g(x)
= h(t)dt

then integrate both sides.

4.4 Cauchy/Euler equations

Equations of form,

at2
dx

dt
+ bt

dx

dt
+ cx = f(t)

Can be made into a linear equation with constant coefficients by using
t = ev. This gives following substitutions,

x
dx

dt
=

dx

dv
and x2 d2x

dt2
=

d2x

dv2
− dx

dv

5 Non-linear equations

These tend not to crop up much in practice, so more complex techniques
are glossed over here. The Principle of Superposition does not apply to non-
linear equations, therefore many of the techniques are just ways to reduce a
non-linear equation into a linear one.

5.1 Nearly seperable equations

If an equation is of the form,

dx

dt
= f

(x

t

)
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Make the substitution, v = x/t. Note: for left hand side use x = vt to
get dx/dt = xdv/dt+v, solve as seperable with v as dependant variable and
then substitute back.

5.2 Bernoulli equations

For equations of form (non-linear due to xn term),

dx

dt
+ g(t)x = h(t)xn

We change the variables using v = x1−n ⇒ dv
dt = (1 − n)x−n dxdt . We do

this by first multiplying the above by (1− n)x−n. This gives,

(1− n)x−n
dx

dt
+ (1− n)g(t)x1−n = (1− n)h(t)

Substituting in v gives,

dv

dt
+ (1− n)g(t)v = (1− n)h(t)

Solve, then substitute x back in.

5.3 Second order, non

6 Partial Differential Equations

A differential equation with more than one independant variable

6.1 Seperation of variables

Assume that solution is the product of functions of each of the independant
variables. i.e. for the wave equation,

∂y2y

∂x2
=

1
v2

∂y2y

∂t2

Assume that y(x, t) = X(x)T (t). Substitute in, then divide by XT to
get,

1
X

d2X

dx2
=

1
v2

1
T

d2T

dt2

Since the above needs to be true for all x and t (an identity), it must
be that each side is equal to a constant. Therefore from this we can extract
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two second order differential equations of one independant variable, as below.
(We set the constant to be −k2 to simplify the solution.

1
X

d2X

dx2
= −k2 and − 1

v2

1
T

d2T

dt2
= −k2

⇒ d2X

dx2
= −k2X and − d2T

dt2
= −k2v2T

Solve these then multiply solutions of X and T to get y.
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